Аккумулятор накопитель энергии. Аккумуляторы химического преобразования. Удельная энергетическая емкость

Страница 10 из 23

Все рассмотренные выше НЭ имели электромеханическое устройство управления, что обусловливало их невысокую маневренность.

Рис. 2.7. Схемы подключения НЭЭ:
а - шунтовая; б - линейная
Накопители электрической энергии (НЭЭ) соединяются с ЭЭС посредством управляемого вентильного преобразователя*, время реверса мощности которого составляет 0,01 с, что определяет их высокую маневренность, а следовательно, возможность комплексного использования в ЭЭС.

*Так как накопление электрической энергии возможно только при постоянном токе.

К накопителям электрической энергии относятся:
топливные элементы (ТЭ);
электрохимические аккумуляторные батареи (ЭАБ);
сверхпроводниковые индуктивные накопители (СПИН);
емкостные накопители (ЕН).
Существует два способа подключения НЭЭ к энергосистеме- шунтовой и линейный, соответствующие им схемы приведены на рис. 2.7, а, б.
Рассмотрим подробнее блоки накопителей электрической энергии.

Устройство управления НЭЭ.

Оно может быть выполнено по трехфазной мостовой схеме, имеющей высокие технические показатели и хорошо зарекомендовавшей себя при эксплуатации существующих преобразователей большой мощности. Число мостов в устройстве управления НЭЭ определяется как реально выполнимой мощностью тиристорного моста, так и режимными соображениями, рассматриваемыми ниже.


Рис. 2.8. Схема последовательного включения модулей 12-пульсных преобразователей, составляющих УУ:
1 - аккумулирующий элемент; 2 - выключатель; 3- междуфазный реактор; 4 - преобразовательный мост; 5- трансформатор; 6 - трехфазная сеть
Каждый мост присоединен к сети переменного тока через отдельный трансформатор. С целью обеспечения 12-пульсного режима преобразования, обладающего рядом преимуществ по сравнению с шестипульсным (меньше пульсации постоянного напряжения, лучше гармонический состав переменного напряжения и др.), вторичные обмотки одной половины трансформаторов соединены в «треугольник», а другой- в «звезду» (рис. 2.8).
Для увеличения коэффициента мощности НЭЭ, определяемого углами регулирования и коммутации преобразовательного устройства, а также степенью искажения формы кривой переменного напряжения, к шинам переменного тока станции подключаются различные компенсирующие устройства - синхронные компенсаторы, статические тиристорные компенсаторы, фильтрокомпенсирующие устройства. Потребление реактивной мощности может быть уменьшено путем разделения преобразователя на ряд последовательно включенных модулей.

В процессе работы углы управления всех модулей, кроме одного, поддерживаются равными 0°. Один из них имеет угол, определяющийся требуемым напряжением. Все модули, имеющие нулевой угол, требуют лишь минимальной реактивной мощности - для коммутации.
На рис. 2.8 показана возможная схема преобразователя, выполненного в целях уменьшения потребления реактивной мощности. Преобразователь представляет собой последовательное соединение 12-пульсных модулей, содержащих силовые трансформаторы. Каждый модуль рассчитан на 4,5 кВ и состоит из двух 6-пульсных мостов, соединенных параллельно с междуфазным реактором, уравновешивающим ток. Два модуля имеют значения тока 50 кА, два других - 30 и 20 кА. Например, при максимальном токе АЭ накопителя каждый 6-пульсный мост обеспечивает постоянный ток 25 кА. Если 12-пульсный модуль закоротить механическим выключателем при нулевом значении напряжения и затем отключить его от трехфазной сети, улучшится полный КПД преобразователя, так как на четырех последовательно соединенных тиристорах устранится падение прямого напряжения.
Значение выдаваемой активной мощности НЭЭ должно во всех режимах его работы определяться системными требованиями и не зависеть от изменяющегося напряжения на самом АЭ. Один из способов обеспечения выполнения этого условия - регулирование углов управления вентилей. Применение управляемых преобразователей в в качестве связующего звена между АЭ и сетью переменного тока позволяет за счет соответствующего изменения углов включения вентилей в течение цикла заряда- разряда НЭЭ осуществить практически любой закон регулирования мощности. При этом мощность на шинах переменного напряжения будет зависеть от соотношения между напряжением на АЭ и противо-ЭДС преобразователя, определяемой значением углов управления. Однако этот способ управления имеет ряд ограничений. Поскольку мощность преобразовательного устройства НЭЭ может достигать нескольких сотен мегаватт, плечи мостов должны собираться из последовательно-параллельно включенных вентилей. С целью ограничения перенапряжений параллельно к ним необходимо подключать активно-емкостные демпфирующие цепочки. При глубоком регулировании преобразователей на плечах моста и его отдельных вентилях появляются скачки обратного напряжения. Необходимые для их ограничения параметры демпфирующих цепочек становятся, неприемлемыми из-за потерь мощности в них. При применении других защитных устройств (например, лавинных диодов) данная проблема остается. Использование тиристоров в мощных преобразовательных установках еще больше увеличивает число вентилей в плечах моста и предъявляет более жесткие требования к устройствам их защиты.


Рис. 2.9. Схема переключения преобразователей УУ


Рис. 2.10. Внешняя характеристика преобразователя
С другой стороны, при глубоком симметричном регулировании за счет фазового сдвига тока относительно напряжения на шинах станции преобладает реактивная составляющая мощности.

Для ее компенсации требуется неприемлемо большая мощность компенсирующих устройств (в пределе равная мощности станции). Эти обстоятельства затрудняют возможность регулирования,в широких пределах углов управления. Увеличить их значения можно за счет применения поочередного управления преобразователей, при котором одна часть мостов работает в выпрямительном режиме, а другая - в инверторном. При таком несимметричном законе управления можно расширить предел регулирования выходного напряжения преобразователя при приемлемом коэффициенте мощности станции. Однако полностью возложить функцию управления НЭЭ на регулирование углов включения вентилей, видимо, нельзя. Его целесообразно сочетать с другими способами обеспечения независимости мощности на шинах НЭЭ от напряжения на АЭ.
На рис. 2.9 изображена схема УУ НЭЭ (для случая, когда преобразовательное устройство станции состоит из двух мостов), позволяющая изменить противо-ЭДС преобразователя (в зависимости от напряжения на АЭ) за счет переключения мостов из параллельного соединения в последовательное при заряде НЭЭ и, наоборот, при его разряде. Она применима для любого числа преобразовательных мостов на станции. Анод каждого моста должен соединяться через коммутационные аппараты с анодом и катодом предыдущего по ходу тока моста и анодом последующего, а катод - с анодом и катодом следующего по ходу тока моста и катодом предыдущего.
Рассмотрим работу НЭЭ в режиме инвертирования, так как именно в нем важно обеспечить независимость мощности на шинах накопителя от напряжения на АЭ.
Рассмотрим внешнюю характеристику преобразователя для случая, когда значение активной мощности на шинах переменного напряжения поддерживается близким к постоянному. В начальный момент (при максимальном напряжении АЭ) преобразователь работает с последовательно соединенными мостами. Поддерживание заданного тока разряда обеспечивается за счет регулирования углов управления инвертора (точки 1-2 на рис. 2.10). В момент уменьшения напряжения на АЭ до значения, при котором возможно поддерживание данного значения тока за счет работы одного моста (точка 2), производят переключение мостов из последовательного соединения в параллельное, что соответствует переходу с точки 2 внешней характеристики преобразователей на точку 3. При этом токи, протекающие через преобразовательные мосты, а следовательно, ток и мощность станции на шинах переменного напряжения не изменяются, так как первичные обмотки трансформаторов соединены параллельно. Положение точки 4 определяется процентом недоиспользования АЭ.
Суммарное число мостов станции должно определяться допустимым пределом регулирования углов управления вентилей и задаваемым коэффициентом использования АЭ. Схема (см. рис. 2.9) построена так, что в режиме инвертирования при переключениях станции не отключаются от ЭЭС и коммутационные аппараты не обрывают рабочий постоянный ток. Поэтому их изготовление не вызовет дополнительных трудностей. Кратковременные перегрузки мостов при переключениях не превосходят допустимые для преобразователей передачи постоянного тока.
Описанная схема в сочетании с регулированием углов управления вентилями позволяет поддерживать требуемую активную мощность, выдаваемую станцией, вплоть до полного разряда АЭ без перерыва энергоснабжения. При ее помощи можно обеспечить независимость потребляемой активной мощности от напряжения на АЭ и в режиме его заряда (при работе мостов в режиме выпрямителя), но с отключением станции от ЭЭС на время перекоммутаций.
Другой способ регулирования мощности НЭЭ - подключение АЭ к преобразователю станции по частям. Для этого АЭ необходимо разбить на секции, каждая из которых подключается независимо друг от друга к шинам постоянного напряжения преобразовательного устройства. При этом мощность станции колеблется около заданного среднего значения; полностью заряженные или разряженные секции необходимо отключать от преобразователя перед очередным подключением. Достаточно мелкое дробление АЭ на секции в сочетании с регулированием углов управления преобразователя позволит уменьшить до допустимого уровня неравномерность изменения активной мощности АЭ в течение цикла работы.
Другие известные способы регулирования цепей заряда- разряда конденсаторных батарей (использование трансформаторов с регулированием напряжения под нагрузкой, переключение конденсаторов батареи из последовательного соединения в параллельное и наоборот, подключение преобразователей к сети переменного тока через индуктивно-емкостные статические преобразователи, использование в качестве преобразовательных устройств компенсированных преобразователей с искусственной коммутацией тока вентилей и т. д.) требуют специального рассмотрения.
Таким образом, НЭЭ с устройством управления на базе 12-пульсного преобразователя при применении рассмотренных выше способов будет отвечать всем требованиям, предъявляемым к источникам пиковой мощности в ЭЭС.
Перейдем теперь к рассмотрению возможных типов аккумулирующих устройств для НЭЭ.
Электрохимические накопители энергии. Электрохимические накопители энергии или электрохимические аккумуляторные батареи - один из самых распространенных типов накопителей.
Электрохимическая аккумуляторная батарея (ЭАБ) состоит из многих элементов, соединенных последовательно и параллельно. Заряд ее происходит во внепиковые часы, а разряд -в часы пиков нагрузки. В процессе заряда электроэнергия электрохимическим путем преобразуется в химическую. При разряде накопленная энергия высвобождается в процессе обратной реакции. Проделана большая работа по совершенствованию ЭАБ. Оказалось, что свинцовые аккумуляторы можно применять и в ЭЭС. Однако стоимость таких элементов высока. Новые типы аккумуляторов основаны на использовании химических реакций таких материалов, как цинк, сера, натрий и т. д., имеющихся в достаточном количестве и являющихся сравнительно дешевыми. Испытания хлор-цинковых аккумуляторов, работающих при низких температурах, дают обнадеживающие результаты. Из аккумуляторов, требующих для работы более высоких температур, можно упомянуть натрий-серные и литий-серные. Особенно успешно ведутся лабораторные испытания натрий-серных ЭАБ.
Характеристики перспективных типов аккумуляторов для выравнивания пиков нагрузки приведены в табл. 2.3.
Электрохимические аккумуляторные батареи имеют КПД, достигающий 65-70%. Ожидается, что перспективные аккумуляторы будут иметь срок службы около 20 лет при удельных капиталовложениях в установку порядка 150 долл/кВт и удельной энергоемкости 250 кВт-ч/м3.
Недостатки ЭАБ - ограниченное число зарядно-разрядных циклов (не более 500), малое время хранения энергии и отрицательное экологическое воздействие.
Таблица 2.3


Материал, используемый в качестве катода, анода

Электролит

Температура, °С

Возможная
плотность
энергии,
Вт-ч/кг

Возможная
плотность
мощности,
Вт/кг

Оксид свинца

Цинк - хлор

Водный раствор

Натрий - сера

Литий - сера

10 ноября 2015 г. российская компания «Экомоторс» объявила о создании первого российского накопителя электроэнергии для дома и бизнеса. С помощью этого устройства можно снижать затраты на электричество и накапливать «зеленую» энергию от солнечных батарей и ветрогенераторов. Разработка от «Экомоторс» обладает рядом уникальных свойств и по своим характеристикам способна составить конкуренцию известными мировым продуктами, таким как Tesla Powerwall.

Первый отечественный накопитель энергии (фото: www.ecomotors.ru)

Накопители энергии нужны для бесперебойного и качественного энергоснабжения домов, офисов, производственных объектов. С их помощью можно снизить затраты на электроэнергию: накапливать электроэнергию ночью по низким ночным тарифам и расходовать днем из накопителя, а не из сети. В связке с солнечными батареями или ветрогенератором новая разработка «Экомоторс» позволит эффективно накапливать «зеленую» энергию и использовать ее тогда, когда нужно потребителям, а не когда светит солнце или дует ветер.

Также эти устройства будут интересны бизнесу для автономного энергоснабжения различных мобильных офисов, мастерских, точек продаж и общественного питания. Для энергетических компаний этот продукт может быть полезен для создания локальных систем накопления энергии и сглаживания пиковых нагрузок на энергосети.

По своим характеристикам накопитель «Экомоторс» способен составить конкуренцию зарубежным аналогам, в частности, широко разрекламированному Powerwall от компании Tesla Motors. Новинка от «Экомоторс» накапливает 7,7 кВт*ч электроэнергии, мощность нагрузки может достигать 7,5 кВт, а его ресурс при ежедневном использовании составляет 10 лет. Также, как и Powerwall, российская разработка позволяет соединять несколько накопителей в единую систему и тем самым увеличивать емкость. Корпус накопителя рассчитан на настенный монтаж в двух положениях – горизонтальном и вертикальном. Такое решение позволяет экономить место и предоставляет пользователям больше вариантов размещения устройства.

При этом разработка «Экомоторс» обладает особенностями, которых пока нет у аналогичных продуктов. Например, для отображения информации о текущем состоянии и режиме работы накопителя используется обычный Android-планшет. Можно получать информацию о работе накопителя на любые Android-устройства (смартфоны, планшеты и пр.) по интерфейсу USB или Bluetooth. Это повышает удобство пользования устройством и позволяет легко объединять его с другими системами «умного дома».

Другой интересной «фишкой» является концепция сменных лицевых панелей, которые одеваются на основной силовой корпус. С помощью таких панелей можно превратить брутальный на вид накопитель в дизайнерский арт-объект. Планируется разработка и выпуск нескольких вариантов панелей, удовлетворяющих вкусам разных групп потребителей. Также выпуск таких панелей могут наладить сторонние производители, что даст клиентам еще больше возможностей выбора дизайна своего накопителя.

Вот что рассказал о новинке Олег Кононенко, директор по разработкам компании «Экомоторс»:

«В последнее время мы наблюдаем рост интереса к небольшим накопителям энергии для домашнего использования и для бизнеса. Поэтому у нас в компании родилась идея создать продукт, который бы удовлетворял эту потребность. Мы стремились по максимуму использовать российские компоненты для этого проекта. В частности, аккумуляторные батареи — главный элемент накопителя – мы решили взять у нашего давнего партнера, российской компании «Лиотех. Но мой взгляд, у нас получился продукт не хуже того, что демонстрируют зарубежные коллеги. А в чем-то даже и лучше.»

Елена Давыдова, Генеральный директор «Экомоторс», отметила, что «…подобные продукты будут не только повышать качество нашей жизни, энергоэффективность российских предприятий и бизнеса, но будут также способствовать развитию отечественного производства современных аккумуляторов, силовой электроники, появлению новых бизнесов, использующих накопители энергии нового поколения».

В настоящее время «Экомоторс» ведет подготовку к серийному выпуску новинки, который запланирован на начало 2016 года. Заинтересованные покупатели могут уже сейчас разместить предварительный заказ на накопитель в «Экомоторс», и получить его сразу, как только стартует производство.

О компании «Экомоторс»

Группа компаний «Экомоторс» занимается производством и продажей электротранспорта и оборудования для «зеленой» энергетики с 2007 года. В настоящее время группа «Экомоторс» является одним из лидеров российского рынка электротранспорта, предлагая своим клиентам и партнерам широкий выбор электрических транспортных средств — от электровелосипедов до электроавтобусов. Компания является официальным дистрибьютором и партнером ряда известных зарубежных производителей электротранспорта и оборудования для «зеленой» энергетики.

Сайт компании: http://www.ecomotors.ru .

Все рассмотренные выше НЭ имели электромеханическое устройство управления, что обусловливало их невысокую маневренность.

Рис. 2.7. Схемы подключения НЭЭ:

а - шунтовая; б - линейная

Накопители электрической энергии (НЭЭ) соединяются с ЭЭС посредством управляемого вентильного преобразователя*, время реверса мощности которого составляет 0,01 с, что определяет их высокую маневренность, а следовательно, возможность комплексного использования в ЭЭС.

*Так как накопление электрической энергии возможно только при постоянном токе.

К накопителям электрической энергии относятся:

топливные элементы (ТЭ);

электрохимические аккумуляторные батареи (ЭАБ);

сверхпроводниковые индуктивные накопители (СПИН);

емкостные накопители (ЕН).

Существует два способа подключения НЭЭ к энергосистеме- шунтовой и линейный, соответствующие им схемы приведены на рис. 2.7, а, б.

Рассмотрим подробнее блоки накопителей электрической энергии.

Устройство управления НЭЭ.

Оно может быть выполнено по трехфазной мостовой схеме, имеющей высокие технические показатели и хорошо зарекомендовавшей себя при эксплуатации существующих преобразователей большой мощности. Число мостов в устройстве управления НЭЭ определяется как реально выполнимой мощностью тиристорного моста, так и режимными соображениями, рассматриваемыми ниже.

Рис. 2.8. Схема последовательного включения модулей 12-пульсных преобразователей, составляющих УУ:

1 - аккумулирующий элемент; 2 - выключатель; 3- междуфазный реактор; 4 - преобразовательный мост; 5- трансформатор; 6 - трехфазная сеть

Каждый мост присоединен к сети переменного тока через отдельный трансформатор. С целью обеспечения 12-пульсного режима преобразования, обладающего рядом преимуществ по сравнению с шестипульсным (меньше пульсации постоянного напряжения, лучше гармонический состав переменного напряжения и др.), вторичные обмотки одной половины трансформаторов соединены в «треугольник», а другой- в «звезду» (рис. 2.8).

Для увеличения коэффициента мощности НЭЭ, определяемого углами регулирования и коммутации преобразовательного устройства, а также степенью искажения формы кривой переменного напряжения, к шинам переменного тока станции подключаются различные компенсирующие устройства - синхронные компенсаторы, статические тиристорные компенсаторы, фильтрокомпенсирующие устройства. Потребление реактивной мощности может быть уменьшено путем разделения преобразователя на ряд последовательно включенных модулей.

В процессе работы углы управления всех модулей, кроме одного, поддерживаются равными 0°. Один из них имеет угол, определяющийся требуемым напряжением. Все модули, имеющие нулевой угол, требуют лишь минимальной реактивной мощности - для коммутации.

На рис. 2.8 показана возможная схема преобразователя, выполненного в целях уменьшения потребления реактивной мощности. Преобразователь представляет собой последовательное соединение 12-пульсных модулей, содержащих силовые трансформаторы. Каждый модуль рассчитан на 4,5 кВ и состоит из двух 6-пульсных мостов, соединенных параллельно с междуфазным реактором, уравновешивающим ток. Два модуля имеют значения тока 50 кА, два других - 30 и 20 кА. Например, при максимальном токе АЭ накопителя каждый 6-пульсный мост обеспечивает постоянный ток 25 кА. Если 12-пульсный модуль закоротить механическим выключателем при нулевом значении напряжения и затем отключить его от трехфазной сети, улучшится полный КПД преобразователя, так как на четырех последовательно соединенных тиристорах устранится падение прямого напряжения.

Значение выдаваемой активной мощности НЭЭ должно во всех режимах его работы определяться системными требованиями и не зависеть от изменяющегося напряжения на самом АЭ. Один из способов обеспечения выполнения этого условия - регулирование углов управления вентилей. Применение управляемых преобразователей в в качестве связующего звена между АЭ и сетью переменного тока позволяет за счет соответствующего изменения углов включения вентилей в течение цикла заряда- разряда НЭЭ осуществить практически любой закон регулирования мощности. При этом мощность на шинах переменного напряжения будет зависеть от соотношения между напряжением на АЭ и противо-ЭДС преобразователя, определяемой значением углов управления. Однако этот способ управления имеет ряд ограничений. Поскольку мощность преобразовательного устройства НЭЭ может достигать нескольких сотен мегаватт, плечи мостов должны собираться из последовательно-параллельно включенных вентилей. С целью ограничения перенапряжений параллельно к ним необходимо подключать активно-емкостные демпфирующие цепочки. При глубоком регулировании преобразователей на плечах моста и его отдельных вентилях появляются скачки обратного напряжения. Необходимые для их ограничения параметры демпфирующих цепочек становятся, неприемлемыми из-за потерь мощности в них. При применении других защитных устройств (например, лавинных диодов) данная проблема остается. Использование тиристоров в мощных преобразовательных установках еще больше увеличивает число вентилей в плечах моста и предъявляет более жесткие требования к устройствам их защиты.

Рис. 2.9. Схема переключения преобразователей УУ

Рис. 2.10. Внешняя характеристика преобразователя

С другой стороны, при глубоком симметричном регулировании за счет фазового сдвига тока относительно напряжения на шинах станции преобладает реактивная составляющая мощности.

Для ее компенсации требуется неприемлемо большая мощность компенсирующих устройств (в пределе равная мощности станции). Эти обстоятельства затрудняют возможность регулирования,в широких пределах углов управления. Увеличить их значения можно за счет применения поочередного управления преобразователей, при котором одна часть мостов работает в выпрямительном режиме, а другая - в инверторном. При таком несимметричном законе управления можно расширить предел регулирования выходного напряжения преобразователя при приемлемом коэффициенте мощности станции. Однако полностью возложить функцию управления НЭЭ на регулирование углов включения вентилей, видимо, нельзя. Его целесообразно сочетать с другими способами обеспечения независимости мощности на шинах НЭЭ от напряжения на АЭ.

На рис. 2.9 изображена схема УУ НЭЭ (для случая, когда преобразовательное устройство станции состоит из двух мостов), позволяющая изменить противо-ЭДС преобразователя (в зависимости от напряжения на АЭ) за счет переключения мостов из параллельного соединения в последовательное при заряде НЭЭ и, наоборот, при его разряде. Она применима для любого числа преобразовательных мостов на станции. Анод каждого моста должен соединяться через коммутационные аппараты с анодом и катодом предыдущего по ходу тока моста и анодом последующего, а катод - с анодом и катодом следующего по ходу тока моста и катодом предыдущего.

Рассмотрим работу НЭЭ в режиме инвертирования, так как именно в нем важно обеспечить независимость мощности на шинах накопителя от напряжения на АЭ.

Рассмотрим внешнюю характеристику преобразователя для случая, когда значение активной мощности на шинах переменного напряжения поддерживается близким к постоянному. В начальный момент (при максимальном напряжении АЭ) преобразователь работает с последовательно соединенными мостами. Поддерживание заданного тока разряда обеспечивается за счет регулирования углов управления инвертора (точки 1-2 на рис. 2.10). В момент уменьшения напряжения на АЭ до значения, при котором возможно поддерживание данного значения тока за счет работы одного моста (точка 2), производят переключение мостов из последовательного соединения в параллельное, что соответствует переходу с точки 2 внешней характеристики преобразователей на точку 3. При этом токи, протекающие через преобразовательные мосты, а следовательно, ток и мощность станции на шинах переменного напряжения не изменяются, так как первичные обмотки трансформаторов соединены параллельно. Положение точки 4 определяется процентом недоиспользования АЭ.

Суммарное число мостов станции должно определяться допустимым пределом регулирования углов управления вентилей и задаваемым коэффициентом использования АЭ. Схема (см. рис. 2.9) построена так, что в режиме инвертирования при переключениях станции не отключаются от ЭЭС и коммутационные аппараты не обрывают рабочий постоянный ток. Поэтому их изготовление не вызовет дополнительных трудностей. Кратковременные перегрузки мостов при переключениях не превосходят допустимые для преобразователей передачи постоянного тока.

Описанная схема в сочетании с регулированием углов управления вентилями позволяет поддерживать требуемую активную мощность, выдаваемую станцией, вплоть до полного разряда АЭ без перерыва энергоснабжения. При ее помощи можно обеспечить независимость потребляемой активной мощности от напряжения на АЭ и в режиме его заряда (при работе мостов в режиме выпрямителя), но с отключением станции от ЭЭС на время перекоммутаций.

Другой способ регулирования мощности НЭЭ - подключение АЭ к преобразователю станции по частям. Для этого АЭ необходимо разбить на секции, каждая из которых подключается независимо друг от друга к шинам постоянного напряжения преобразовательного устройства. При этом мощность станции колеблется около заданного среднего значения; полностью заряженные или разряженные секции необходимо отключать от преобразователя перед очередным подключением. Достаточно мелкое дробление АЭ на секции в сочетании с регулированием углов управления преобразователя позволит уменьшить до допустимого уровня неравномерность изменения активной мощности АЭ в течение цикла работы.

Другие известные способы регулирования цепей заряда- разряда конденсаторных батарей (использование трансформаторов с регулированием напряжения под нагрузкой, переключение конденсаторов батареи из последовательного соединения в параллельное и наоборот, подключение преобразователей к сети переменного тока через индуктивно-емкостные статические преобразователи, использование в качестве преобразовательных устройств компенсированных преобразователей с искусственной коммутацией тока вентилей и т. д.) требуют специального рассмотрения.

Таким образом, НЭЭ с устройством управления на базе 12-пульсного преобразователя при применении рассмотренных выше способов будет отвечать всем требованиям, предъявляемым к источникам пиковой мощности в ЭЭС.

Перейдем теперь к рассмотрению возможных типов аккумулирующих устройств для НЭЭ.

Электрохимические накопители энергии. Электрохимические накопители энергии или электрохимические аккумуляторные батареи - один из самых распространенных типов накопителей.

Электрохимическая аккумуляторная батарея (ЭАБ) состоит из многих элементов, соединенных последовательно и параллельно. Заряд ее происходит во внепиковые часы, а разряд -в часы пиков нагрузки. В процессе заряда электроэнергия электрохимическим путем преобразуется в химическую. При разряде накопленная энергия высвобождается в процессе обратной реакции. Проделана большая работа по совершенствованию ЭАБ. Оказалось, что свинцовые аккумуляторы можно применять и в ЭЭС. Однако стоимость таких элементов высока. Новые типы аккумуляторов основаны на использовании химических реакций таких материалов, как цинк, сера, натрий и т. д., имеющихся в достаточном количестве и являющихся сравнительно дешевыми. Испытания хлор-цинковых аккумуляторов, работающих при низких температурах, дают обнадеживающие результаты. Из аккумуляторов, требующих для работы более высоких температур, можно упомянуть натрий-серные и литий-серные. Особенно успешно ведутся лабораторные испытания натрий-серных ЭАБ.

Характеристики перспективных типов аккумуляторов для выравнивания пиков нагрузки приведены в табл. 2.3.

Электрохимические аккумуляторные батареи имеют КПД, достигающий 65-70%. Ожидается, что перспективные аккумуляторы будут иметь срок службы около 20 лет при удельных капиталовложениях в установку порядка 150 долл/кВт и удельной энергоемкости 250 кВт-ч/м3.

Недостатки ЭАБ - ограниченное число зарядно-разрядных циклов (не более 500), малое время хранения энергии и отрицательное экологическое воздействие.

Накопители электрической энергии - Накопители энергии в электрических системах


Накопители электрической энергии — Накопители энергии в электрических системах Все рассмотренные выше НЭ имели электромеханическое устройство управления, что обусловливало их невысокую

Электромеханический накопитель энергии

Долгое время механические накопители энергии на базе маховика не находили широкого применения. Этому способствовали не очень высокие показатели эффективности их работы. Но за последние десятилетия за счет внедрения новых технологий ситуация изменилась, и сейчас они находят все большее применение в различных областях, в том числе и в энергетике.

В настоящее время для аккумулирования энергии все еще широко используются различного типа электрохимические накопители, которым присущи свои недостатки, среди которых можно выделить недолговечность. Поэтому очень важно найти альтернативу таким накопителям, которые отвечали бы определенным требованиям – это долговечность, надежность, габариты.

Одним из них может стать механический накопитель на базе маховика, совмещенный с электрической машиной, работающей и как двигатель, и как генератор (электромеханический накопитель).

Электромеханический накопитель энергии VYCON

Такое устройство способно как запасать и хранить механическую энергию, но также и преобразовывать и отдавать ее в форме электрической энергии для дальнейшего использования. Запасается, как правило, кинетическая энергия вращательного движения маховика, который при заряде электромеханического накопителя раскручивается от источника механической энергии. При разряде запасенная механическая энергия преобразуется в электрическую с помощью электродвигателя, работающего в режиме генератора. Получается, что электромеханический накопитель состоит из трех конструктивно объединенных частей – маховика, электродвигателя и генератора.

Преимущество электромеханических накопителей заключаются в высокой экологичности и долговечности, простоте технического обслуживания, и самой высокой удельной мощности из всех типов аккумуляторов энергии.

Устройства механического накопителя совмещенного с электрической машиной, начали изучаться с конца 70-х годов ХХ века. За это время появились сверхпрочные и легкие материалы, повысились характеристики постоянных магнитов, магнитных подшипников, электроники. Это приводит к тому, что современные механические накопители обладают большой энергоемкостью и способностью быстро отдавать запас энергии. Использование этих технологий позволяет внедрять электромеханические накопители в различные устройства.

Сравнительные характеристики КПД некоторых типов накопителей.

Основные преимущества механических накопителей, использующих в своей конструкции маховик, можно выделить:

  • — высокая удельная мощность;
  • — высокая удельная плотность запасенной энергии;
  • — отсутствие влияния циклов заряда-разрядов на срок эксплуатации, длительный срок эксплуатации махового колеса;
  • — не требуется периодическое обслуживание;
  • — масштабируемость;
  • низкое воздействие на окружающую среду.

В таблице приведены значения удельного энергосодержания некоторых современных накопителей энергии:

Удельное энергосодержание, Вт час/кг

Никелевые металл-гидридные аккумуляторы

Литые стальные маховики

Супермаховики из углепластиков, стальных лент

Как видно из таблицы, применяя современные технологии, среди которых прочные и легкие материалы, магнитные подшипники, можно добиться серьезных значений удельного энергосодержания у механический накопителей.

В настоящее время уже есть коммерческие применения механических накопителей энергии в космических технологиях, в автотранспорте, в источниках бесперебойного питания (UPS), транспорте, в системах повышения качества электрической сети, в системах автономного электроснабжения.

Для автотранспорта механические накопители разрабатываются оптимизации силовой установки и рекуперации энергии. Потребность в этом назрела уже давно, но была во многом ограничена. С одной стороны это было ограничено большими капиталовложениями, а с другой – недостаточным технологическим уровнем развития экологически чистых и достаточно емких накопителей и рекуператоров энергии.

Электромеханический накопитель, разработанный для применения в Формуле-1

Особый интерес вызывает применение электромеханических накопителей для систем автономного электроснабжения. Известно, что общей особенностью возобновляемых источников энергии, таких как энергия ветра и солнца, является их неустойчивость по величине и по времени. Так ветровой поток характеризуется неустойчивостью по направлению и скорости, что может привести, например, к краткосрочным колебаниям параметров электрического тока. То же самое наблюдается и в солнечной энергетике, которая связана с изменениями дня и ночи, а также влиянием погодных условий.

Поэтому имеет смысл накопить энергию в период ее выработки, и затем использовать для непрерывной ее подачи потребителю, когда выработка не осуществляется. Особенно это актуально для систем автономного электроснабжения, которые позволяют обеспечить потребителей электрическим током там, где это затруднено обычным способом через общую электрическую сеть.

Принцип действия такой схемы следующий. Избыточная электроэнергия подается на электродвигатель, который раскручивает маховик, в котором запасается энергия. После того, как потребитель восстановил способность утилизировать получаемую электроэнергию, генератор преобразовывает энергию вращения обратно в электроэнергию. Если учесть, что современные электродвигатели и генераторы обладают высоким КПД, а потери при использовании современных технологий и материалов в конструкции накопителя минимальны, можно сделать вывод, что использование электродинамического накопителя в связке производитель-потребитель в автономных энергосистемах является перспективным решением.

На следующем рисунке приведена схема системы автономного электроснабжения, разработанная компанией ENERCON (Германия), в которой в качестве промежуточных звеньев установлены дизель-генератор, аккумуляторная батарея, а также механический накопитель энергии.

Схема системы автономного электроснабжения от Enercon

Для улучшения параметра электрического тока может служить система на базе контроллера Distribution Static Synchronous Compensator (DSTATCOM), совмещенного с электромеханическим накопителем. Система позволяет смягчить колебания напряжения и мощности от различных энергогенерирующих систем, в том числе и от ветроэлектрических установок.

Как показано на рисунке, применение такого устройства в системе позволяет улучшить параметры электрического тока.

На следующем рисунке показан промышленный механический накопитель POWERBRIDGE 1100 кВт/4,6 кВт компании Piller, служащий промежуточным звеном при переходе потребителя большой мощности от сетевого питания к дизель-генератору. Его масса равна 6000 кг, скорость вращения 1800-3600 об/мин.

Механический накопитель POWERBRIDGE

На следующем рисунке показан механический накопитель 300 Вт, который может работать на скоростях до 40000об/мин. В его конструкции используются магнитные подшипники на сверхпроводниках, для чего требуется система охлаждения.

Механический накопитель на магнитных подшипника

Согласно исследованиям, проведенных в Ливерморской лаборатории, современные электромеханические накопители энергии обладают существенным преимуществом над другими видами систем аккумулирования в эффективности восстановления энергии (кВтч на разряд по отношению кВтч на заряд). КПД в них превышает 95%, что значительно лучше, чем любая свинцово-кислотная батарея. Удельная величина запасенной энергии при этом может достигать 5-10 кВт, что в несколько десятков раз выше, чем у электрохимических батарей.

Обладая высокой удельной мощностью, механические накопители способны быстро передавать и запасать энергию, что способствует их дальнейшему внедрению.

Renewable Energy - Возобновляемая энергетика - Электромеханический накопитель энергии


Renewable Energy — информационный ресурс о возобновляемой энергетике. Рассматривается перспективность и эффективность применения различных технологий в области получения, преобразования и использования энергии.









В декабре 2017 года коллектив АО «НТЦ ФСК ЕЭС» принял участие в акции Эко-марафона «Сдай макулатуру – спаси дерево» в рамках проекта «Ресурсосбережение 2017».

АО «НТЦ ФСК ЕЭС» успешно завершило работы по проектированиюВТСП КЛ 20 кВЦентральная – РП-9по титулу:«Строительство высокотемпературной сверхпроводящей (ВТСП) кабельной линии постоянного тока напряжением 20 кВЦентральная –ПС РП-9».В результате выполненных работ получено положительное заключение Главгосэкспертизы № 78-1-1-3-0219-17 от 20.11.2017.

22 декабря состоялось торжественное собрание коллектива АО «НТЦ ФСК ЕЭС» по случаю профессионального праздника — Дня энергетика!

Накопители электрической энергии являются важнейшим элементом будущих активно-адаптивных сетей. Накопители энергии выполняют ряд функций:

  • выравнивание графиков нагрузки в сети (накопление электрической энергии в периоды наличия избыточной (дешевой) энергии и выдачу в сеть в периоды дефицита);
  • обеспечение в сочетании с устройствами FACTS повышения пределов устойчивости;
  • обеспечение бесперебойного питания особо важных объектов, собственных нужд электростанций и подстанций;
  • демпфирование колебаний мощности, стабилизация работы малоинерционных децентрализованных источников электрической энергии.

Состав услуг АО «НТЦ ФСК ЕЭС» по внедрению накопителей электрической энергии большой емкости:

  • технико-экономическое обоснование
  • рекомендации по выбору мест установки
  • проектирование гибридных накопителей
  • рекомендации по структуре накопителей
  • реализация систем управления накопителями

Справочная информация

Накопители энергии делятся на электростатические, к которым относятся аккумуляторные батареи большой энергоёмкости (АББЭ), накопители энергии на основе молекулярных конденсаторов, накопители энергии на основе низкотемпературных сверхпроводников.

Все типы электростатических накопителей связываются с сетью через устройства силовой электроники – преобразователи тока или напряжения.

Молекулярные накопители проходят стадию создания и испытания опытных образцов. Сверпроводниковый Индуктивный Накопитель Энергии (СПИНЭ) — это одно из применений сверхпроводимости. Практическое применение в настоящее время нашли передвижные СПИНЭ сравнительно небольшой энергоемкости (до 106 Дж.), широкое применение СПИНЭ возможно после разработки и создания СПИНЭ на базе высокотемпературных сверхпроводников. СПИНЭ могут находить применение в электроэнергетике как одно из эффективных средств повышения режимной надежности и устойчивости электроэнергетических систем. При этом выделяются такие свойства индуктивных накопителей, как быстродействие, высокий КПД, возможность полной автоматизации ввода и вывода энергии, большая удельная энергоемкость, регулирование активной и реактивной мощности. Ожидается, что к 2016-2020 гг. будут созданы недорогие системы хранения энергии достаточной энергоемкости.

В настоящее время нет практических ограничений по созданию агрегатов первого типа мощности до 300 – 400 МВт и второго типа мощности 800 – 1600 МВт. Первый тип агрегатов имеет больший диапазон изменения скорости и большую способность использования кинетической энергии вращающихся машин, второй тип способен работать в диапазоне регулирования частоты вращения 50% от синхронной, имеет меньшую мощность преобразовательного устройства, чем в первом случае (в первом случае мощность преобразователя равна мощности машин, во втором – пропорциональна глубине регулирования), обладает меньшей стоимостью и может быть выполнен на большую мощность. В России был разработан эскизный проект маховикового накопителя на основе асинхронизированной машины вертикального исполнения мощностью 200 МВт.

Электрические накопители энергии

Обзор накопителей (аккумуляторов) энергии

При производстве электроэнергии необходимыми составляющими в цепочке являются накопитель энергии и электрогенератор. Для традиционных способов генерации электроэнергии накопитель энергии находится перед электрогенератором. Например, вода, запасенная в водохранилище гидроэлектростанции, обладает гравитационной энергией и может расходоваться по мере надобности для вращения турбин электрогенератора. На тепловой электростанции энергия вначале запасается в виде угля, мазута или газа, которые также используются в соответствии с потребностями. На атомных электростанциях роль накопителя выполняет ядерное топливо. Вышеприведенные электростанции могут работать в режиме постоянной мощности, изменяя ее только при изменении энергопотребления. При производстве электрической энергии с использованием так называемых альтернативных источников (например, ветер, солнце) возникает проблема непостоянства их мощности, которая отсутствует при производстве энергии традиционными способами. Поэтому необходимо энергию источника вначале запасти в накопителе энергии, а затем уже расходовать энергию накопителя, преобразуя ее, например, в электрическую энергию в необходимом количестве. При этом накопитель будет играть роль демпфирующего устройства, сглаживающего колебания мощности источника. Стоимость накопителя играет существенную роль в цене производимой электроэнергии .

Помимо вышесказанного накопители энергии могут применяться и для других целей, например, для генерации сильных и сверхсильных магнитных полей .

Соотношение между единицами измерения энергии

1 кВт · час = 1000 Вт · 3600 с = 3600000 Дж = 3.6 МДж

Примеры накопителей энергии

1. Конденсаторный накопитель

При емкости конденсатора 1 Ф и напряжении 250 В запасенная энергия составит: E = CU 2 /2 = 1 ∙ 250 2 /2 = 31.25 кДж

8.69 Вт · час. Если использовать электролитические конденсаторы, то их масса может составить 120 кг. Удельная энергия накопителя при этом 0.26 кДж/кг. При работе накопитель может в течение часа обеспечивать нагрузку не более 9 Вт. Срок службы электролитических конденсаторов может достигать 20 лет. Ионисторы по плотности запасаемой энергии приближаются к химическим аккумуляторным батареям. Достоинства: накопленная энергия может быть использована в течение короткого промежутка времени.

2. Гравитационные накопители

Копрового типа . Вначале поднимаем тело массой 2000 кг на высоту 5 м. Затем тело опускается под действием силы тяжести, вращая электрогенератор. E = mgh

2000 ∙ 10 ∙ 5 = 100 кДж

27.8 Вт · час. Удельная энергия 0.05 кДж/кг. При работе накопитель может в течение часа обеспечивать нагрузку не более 28 Вт. Срок службы накопителя может составлять 20 и более лет. Достоинства: накопленная энергия может быть использована в течение короткого промежутка времени.

Гидравлический. Вначале перекачиваем 10 т воды из подземного резервуара (колодца) в емкость на вышке. Затем вода из емкости под действием силы тяжести перетекает обратно в резервуар, вращая турбину с электрогенератором. Легко обеспечить разницу высот 10 м. Тогда E = mgh

10000 ∙ 10 ∙ 10 = 1 МДж = 0.278 кВт · час. Удельная энергия 0.1 кДж/кг. При работе накопитель может в течение часа обеспечивать нагрузку не более 280 Вт. Срок службы накопителя может составлять 20 и более лет. Достоинства: при использовании ветродвигателя последний может непосредственно приводить в движение водяной насос, вода из емкости на вышке может использоваться для других нужд.

Энергия, запасаемая в маховике, может быть найдена по формуле E = 0.5 J w 2 , где J — момент инерции вращающегося тела.

Для цилиндра радиуса R и высотой H:

J = 0.5 p r R 4 H

где r — плотность материала, из которого изготовлен цилиндр.

Предельная линейная скорость на периферии маховика V max (составляет примерно 200 м/с для стали).

Тогда E max = 0.5 J w 2 max = 0.25 p r R 2 H V 2 max = 0.25 M V 2 max

Удельная энергия составит: E max /M = 0.25 V 2 max

Для стального цилиндрического маховика максимальная удельная энергия составляет приблизительно 10 кДж/кг. Для маховика массой 100 кг (R = 0.2 м, H = 0.1 м) максимальная накопленная энергия может составлять 0.25 ∙ 3.14 ∙ 8000 ∙ 0.2 2 ∙ 0.1 ∙ 200 2

0.278 кВт · час. При работе накопитель может в течение часа обеспечивать нагрузку не более 280 Вт. Срок службы маховика может составлять 20 и более лет. Достоинства: накопленная энергия может быть использована в течение короткого промежутка времени, характеристики могут быть существенно улучшены .

4. Химическая аккумуляторная батарея

Свинцово-кислотная аккумуляторная батарея емкостью 190 А · час с выходным напряжением 12 В при 50 % разрядке может выдавать ток величиной 10 А примерно 9 часов. Запасенная энергия составляет 12 ∙ 10 ∙ 9 = 1.08 кВт · час

3.9 МДж за цикл. При массе батареи 70 кг удельная энергия составит 56 кДж/кг. При работе аккумулятор может в течение часа обеспечивать нагрузку не более 1080 Вт. Срок службы аккумулятора составляет 3 . 5 лет. Достоинства: от аккумулятора можно получать непосредственно электрическую энергию, выходной ток может достигать величины порядка тысячи ампер, выходное напряжение 12 В соответствует автомобильному стандарту, имеется множество устройств, работающих непосредственно от источника постоянного напряжения 12 В, имеются преобразователи 12/220 В различной мощности .

5. Пневматический накопитель

В стальной резервуар емкостью 1 м 3 закачивается воздух под давлением 50 атмосфер. Чтобы выдержать такое давление, стенки резервуара должны иметь толщину примерно 5 мм. Сжатый воздух используется для выполнения работы. При изотермическом процессе работа A, совершаемая идеальным газом при расширении в атмосферу, определяется формулой :

где M — масса газа, m — молярная масса газа, R — универсальная газовая постоянная, T — абсолютная температура, V 1 — начальный объем газа, V 2 — конечный объем газа. С учетом уравнения состояния для идеального газа (P 1 V 1 = P 2 V 2) для данной реализации накопителя V 2 / V 1 = 50, R = 8.31 Дж/(моль · град), T = 293 0 K, M / m

2232, работа газа при расширении 2232 ∙ 8.31 ∙ 293 ∙ ln 50

5.56 кВт · час за цикл. Масса накопителя примерно равна 250 кг. Удельная энергия составит 80 кДж/кг. При работе пневматический накопитель может в течение часа обеспечивать нагрузку не более 5.5 кВт. Срок службы пневматического накопителя может составлять 20 и более лет. Достоинства: накопительный резервуар может быть расположен под землей, в качестве резервуара могут использоваться стандартные газовые баллоны в требуемом количестве с соответствующим оборудованием, при использовании ветродвигателя последний может непосредственно приводить в действие насос компрессора, имеется достаточно большое количество устройств, напрямую использующих энергию сжатого воздуха.

Ниже приведена таблица с параметрами рассмотренных накопителей энергии.

на нагрузку 100 Вт, минут

напряжением 250 В, масса 120 кг

100 кг, диаметр 0.4 м,

выходное напряжение 12 В,

масса аккумулятора 70 кг

1 м 3 массой 250 кг со сжатым

воздухом под давлением 50

Помимо рассмотренных существуют и другие накопители энергии, например, индукционные, пружинные, тепловые.

  1. Бухаров А. И. и др. Средства заряда аккумуляторов и аккумуляторных батарей: Справочник / А. И. Бухаров, И. А. Емельянов, В. П. Судаков. — М.: Энергоатомиздат, 1988. — 288 с.: ил.
  2. Генератор мощных импульсов тока (емкостной накопитель энергии)
  3. Гулиа Н. В. В поисках «энергетической капсулы»: Научно-художественная лит-ра / Художник А. Файдель. — М.: Дет. лит., 1984. — 143 с., ил.
  4. Корзинов Н. Диски высокой энергии. — Популярная механика, 2008, № 12.
  5. Кунин В. Н., Дорожков В. В., Сергеева М. В. Инерционный копровый накопитель для получения электрических импульсов высоких энергий. — Приборы и техника эксперимента, 1981, № 3.
  6. Накопители энергии: Учеб. пособие для вузов / Д. А. Бут, Б. Л. Алиевский, С. Р. Мизюрин, П. В. Васюкевич; Под ред. Д. А. Бута. — М.: Энергоатомиздат, 1991. — 400 с.: ил.
  7. Получение сверхсильных импульсных магнитных полей в микроскопических объемах

220 В 50 Гц 100 Вт

  • Преобразователь напряжения =12/
  • Аккумулятор (лат. Accumulator — собиратель) — устройство для накопления энергии с целью ее последующего использования.
  • Ветродвигатель — преобразователь энергии воздушного потока в механическую энергию движения.
  • Электрогенератор (электрический генератор) — преобразователь неэлектрической энергии источника в электрическую энергию.

И накопители электрической энергии

Источники электрической энергии. Известно, что источники электрической энергии преобразуют энергию какого-либо вида в электрическую. В зависимости от вида преобразуемой энергии и принципа преобразования различают электромеханические, магнитогидродинамические, термоэмиссионные, термоэлектрические, электрохимические и другие генераторы, из которых наибольшее распространение получили электромеханические и в какой-то степени электрохимические генераторы.

Электромеханический, или электромашинный, генератор – это электрическая машина, действие которой основано на явлении электромагнитной индукции и которая предназначена для преобразования механической энергии в электрическую в процессе относительного вращения ее частей. Для привода генераторов во вращение можно использовать различные механические двигатели, но наиболее распространены двигатели внутреннего сгорания, входящие в состав агрегатов, – дизель-генераторы (ДГ), турбины в виде турбогенераторов и на судах старой постройки – паровые машины (пародинамо).

Дизель-генераторы, турбогенераторы и пародинамо представляют собой агрегаты на общей фундаментной раме, состоящие из приводного механического двигателя (дизеля, турбины, паровой машины) и генератора. Генераторы соединяются с дизелями и паровыми машинами обычно напрямую, а с турбинами – через редуктор.

Двигатели внутреннего сгорания (дизели) как приводные двигатели генераторов имеют существенные особенности, обеспечивающие их широкое распространение: автономность работы и достаточно высокий КПД. Недостатком дизелей являются ограниченный моторесурс и высокая шумность при работе.

Паровые машины находили широкое применение на пароходах, то есть на судах с паровыми энергетическими установками, паровыми котлами, где имелось достаточное количество пара. Недостатком паровых машин является их зависимость от других источников энергии – паровых котлов.

Паровые турбины также получают энергию от паровых котлов. Отличительными особенностями турбин являются высокая частота вращения, малые габаритные размеры и масса, большой срок службы. Паровые турбины на судах речного флота пока не нашли применения.

Газовые турбины – весьма перспективные двигатели для привода генераторов, так как они обладают преимуществами паровых турбин (малые габаритные размеры и масса, большой срок службы) и дизелей (автономность работы). Выбор приводного двигателя для генераторов СЭС обычно согласуется с типом судовой энергетической установки. Так, на теплоходах обычно устанавливают дизель-генераторы, на пароходах – пародинамо или паровые турбогенераторы и т.д.

Валогенераторы, то есть генераторы, приводимые от гребных валов, в ряде случаев обладают существенными преимуществами: во время полного хода судна исключается необходимость в работе других источников энергии, то есть сохраняется их моторесурс; расход топлива на единицу вырабатываемой энергии в валогенераторных установках ниже, чем у дизель- или турбогенераторов. Эта объясняется тем, что главные двигатели, как более мощные, экономичней приводных двигателей дизель- и турбогенераторов.

Однако валогенераторы характеризуются зависимостью частоты вращения генератора от частоты вращения гребного вала. Естественно, что изменение частоты вращения генератора приводит к изменению параметров вырабатываемой им электрической энергии, что обычно отрицательно сказывается на работе многих приемников. Поэтому приходится ограничивать диапазон частот вращения, при которых возможно применение валогенераторов, или применять меры по стабилизации параметров электрической энергии и разделять приемники в зависимости от их требований к стабильности ее параметров. Во всяком случае, это вызывает усложнение кинематики валогенераторных установок (ВГУ) и схемы судовой электростанции. Поэтому применение валогенераторов требует проведения технико-экономического обоснования. На судах речного флота наряду с генераторами постоянного тока используются и трехфазные синхронные генераторы переменного, тока.

К судовым генераторам, как и вообще ко всему судовому электрооборудованию, предъявляются повышенные требования, вызванные условиями работы этого оборудования:

– для изоляции обмоток машин и других ответственных устройств должны применяться изоляционные материалы не ниже класса Е;

– генераторы должны (после нагрева до установившейся температуры, соответствующей номинальному режиму работы) выдерживать 50%-ю перегрузку по току в течение 15 с при постоянном токе и 120 с при переменном;

– роторы генераторов должны выдерживать в течение 2 мин без повреждений и остаточных деформаций частоту вращения, равную 120% номинальной, и т.д.

Генераторы постоянного тока, как уже отмечалось, используются на небольших судах при относительно небольшой мощности СЭС. Наиболее часто генераторы постоянного тока применяются при их совместной работе с аккумуляторными батареями, которые в свою очередь используются и для стартерного запуска главных двигателей.

В этом случае обычно используются генераторы с параллельным возбуждением типов Г и ГСК мощностью 1,2 кВт, напряжением 27 В, которые навешены на главные двигатели и приводятся ими во вращение.

В судовых электростанциях с напряжением 115 и 230 В устанавливают дизель-генераторы или пародинамо с генераторами постоянного тока типов ПН, П, П2 со смешанным возбуждением.

Речной Регистр предъявляет к генераторам постоянного тока со смешанным возбуждением следующие требования: напряжение нагретого генератора, отрегулированное при 20%-й нагрузке на номинальное значение (с погрешностью ±1%), в случае 100%-й нагрузки не должно изменяться более чем на 1,5% для генераторов мощностью 50 кВт и более, на 2,5% для генераторов мощностью менее 50 кВт.

При изменении нагрузки генератора со смешанным возбуждением в пределах 20–100% номинальной нагрузки изменение напряжения на его выводах не должно превышать ±3% при мощности 50 кВт и выше, ±4% при мощности свыше 15 кВт (но менее 50 кВт), ±5% при мощности 15 кВт и менее.

Основными источниками переменного тока в судовых электростанциях являются трехфазные синхронные генераторы. На судах речного флота используются генераторы отечественного и зарубежного производства, имеющие различные системы возбуждения. На судах прежних выпусков эксплуатировались синхронные генераторы с независимым возбуждением, которые впоследствии были заменены генераторами с самовозбуждением и амплитудно-фазовым компаундированием, а также генераторами с тиристорной системой возбуждения.

Синхронные генераторы с независимым возбуждением (отечественные типа МС, зарубежные А13) имеют на одном валу машину постоянного тока – возбудитель, от которого питается обмотка возбуждения синхронного генератора, обычно называемая индуктором.

Синхронные генераторы с самовозбуждением (отечественные типов МСС, МКС, ГСС, ЕСС, ОС, зарубежные ДЕССАУ) не имеют возбудителей. Питание обмотки индуктора в этом случае осуществляется от выводов статора генератора через специальное устройство, осуществляющее преобразование энергии и АФК.

Синхронные генераторы с самовозбуждением и тиристорными преобразователями также не имеют возбудителей. Обмотки индуктора в этом случае тоже питаются от выводов обмоток статора, но для преобразования энергии, идущей на возбуждение, используются полупроводниковые диоды – тиристоры, управление которыми осуществляется блоком управления.

Преобразователи электрической энергии. На судах часто устанавливаются приемники, требующие для своей работы электрическую энергию с параметрами, отличными от тех, с которыми вырабатывают ее источники. Например, на судне в качестве источников установлены трехфазные генераторы напряжением 400 В, а для приемника – электрического освещения – требуется напряжение 220 В. На небольших судах установлен источник – генератор постоянного тока 27 В, а приемник – холодильник, работающий от сети переменного тока 220 В. В этих случаях для питания указанных приемников требуется установка соответствующих преобразователей. Проще всего выполнить такие преобразователи в виде двухмашинного агрегата, где одна машина – двигатель – должна быть рассчитана на электроэнергию с параметрами источника, а другая – генератор – должна вырабатывать электроэнергию с параметрами, которые необходимы для работы этих приемников.

Однако вращающиеся преобразователи обладают рядом недостатков, которые присущи всем вращающимся машинам, например, наличием скользящих контактов, подшипников, поэтому часто оказывается целесообразным использование статических преобразователей, в которых нет частей, перемещающихся одна относительно другой.

В судовых электростанциях для преобразования электрической энергии обычно используются трансформаторы, выпрямители и инверторы. Другие преобразователи, например преобразователи частоты, чаще используются для отдельных электроприводов.

Трансформаторы служат для преобразования электрической энергии, вырабатываемой источниками переменного тока, путем изменения напряжения при сохранении частоты, формы кривой и числа фаз. В судовых условиях трансформаторы обычно применяются для питания сетей освещения и бытовых приборов, при этом, естественно, эти сети электрически отделяются от силовых сетей, что увеличивает надежность судовой электроэнергетической системы и облегчает ее обслуживание.

На судах речного флота имеются трех- и однофазные трансформаторы. Трехфазные трансформаторы используются для питания от них сетей нормального электрического освещения и бытовых приборов (холодильников, стиральных машин, утюгов и т.д.), а однофазные – для питания сетей переносного освещения и переносного инструмента.

Согласно Правилам Российского Речного Регистра (аналогичное требование есть и у Российского Морского Регистра судоходства) трансформаторы должны иметь воздушное охлаждение. Установка трансформаторов с масляным охлаждением допускается на стоечных судах и несамоходных судах технического флота.

Выпрямители предназначаются для преобразования электрической энергии переменного тока в электрическую энергию постоянного тока. Необходимость такого преобразования определяется наличием на судне аккумуляторных батарей и других приемников электрической энергии постоянного тока.

В ряде случаев, например, в качестве валогенератора может быть установлен генератор постоянного тока, тогда как дизель-генератор – переменного тока. Тогда для питания приемников постоянного тока от дизель-генератора необходима установка выпрямителя.

Инверторы преобразуют электрическую энергию постоянного тока в электрическую энергию переменного тока. Необходимость такого преобразования определяется наличием на судне электростанции постоянного тока и небольшого числа маломощных приемников переменного тока: холодильников, телевизоров, стиральных машин и т.д.

Накопители электрической энергии. На небольших судах, на которых источником электрической энергии является только генератор, навешенный на главный двигатель и вырабатывающий электрическую энергию только во время работы главного двигателя, для снабжения электроэнергией всех приемников во время его стоянки необходима установка какого-либо накопителя энергии. Этот накопитель при работе генератора работает как приемник и накапливает энергию, а при стоянке генератора переходит в режим источника и отдает энергию в судовую сеть.

Такой накопитель используется также как аварийный источник электрической энергии, питающий необходимое число приемников при выходе из строя основных источников электрической энергии.

Ведутся разработки по использованию накопителей энергии с целью повышения экономичности судовой электроэнергетической установки. Если раньше, например, потенциальная энергия опускаемого груза рассеивалась в окружающую среду, то с установкой накопителя ее можно использовать полезно.

Известны различного вида накопители энергии: инерционные, накапливающие энергию в виде кинетической энергии вращающихся масс, химические, сверхпроводящие и т.д. Наиболее распространены на судах химические накопители энергии, известные как аккумуляторы электрической энергии. Кроме того, применяются и инерционные накопители, выполняемые в виде маховиков на валах электрических генераторов.

И накопители электрической энергии


И накопители электрической энергии Источники электрической энергии. Известно, что источники электрической энергии преобразуют энергию какого-либо вида в электрическую. В зависимости от вида

Производство энергии за последний век нанесло колоссальный вред окружающей среде нашей планеты. Использование ископаемых источников, их сжигание и выброс отходов в атмосферу - одна из причин смены климата на Земле.

Презентация накопителя энергии для дома Tesla Energy Powerwall 2.0 на выставке в Хауторн (Hawthorne), Калифорния, 30 апреля 2015 года

Когда ситуация стала критической, люди начали задумываться об альтернативных источниках энергии. Кто-то задумывается, а кто-то делает. Накопитель электроэнергии PowerWall 2 0 - один из примеров действий.

Альтернативные источники энергии

Уже давно человечеством были придуманы солнечные батареи и ветряки. Они преобразуют солнечные лучи и ветер в электроэнергию, которую используют люди для своих повседневных нужд. Солнечные батареи применяют в многочисленных сферах жизни человечества: в космосе, в быту, на производстве.

Принцип организации построения электросети от солнечных панелей и накопителя для дома Tesla PowerWall 2.0

В странах Скандинавии люди устанавливают батареи на крыши своих домов, расходуют электроэнергию, а остатки продают соседям. У них получилось не только отказаться от традиционных источников электричества, но и заработать небольшую сумму денег на свои расходы.

Американская компания Tesla пошла дальше и предложила миру PowerPack - солнечную батарею нового поколения. Она представляет собой целую крышу, а не отдельные маленькие солнечные батареи. Представлено четыре вида такой конструкции, что позволяет подобрать крышу под архитектуру своего дома. Такая технология способа брать на себя все расходы электроэнергии среднестатистической семьи.

Идея Tesla состоит в том, чтобы накопленной энергией заряжать автомобиль или автомобилем запитывать дом электричеством

Куда девать лишнюю энергию? Не всегда получается расходовать всё электричество, которое человек получается от ветряков и солнечных батарей. Отличным вариантом станет накопитель энергии.

PowerWall от Tesla

Илон Маск высказывается об идее создания новой эры «зелёной энергетики», полного отказа от производства электричества на земных ископаемых. Шагом вперёд стал выпуск домашнего накопителя энергии PowerWall, который стоит применять при наличии ветряков или солнечных батарей, в частности, PowerPack.

Илон Маск презентует Powerwall на 10 кВт

Использование такой технологии - инвестиция в будущее и снижение расходов на электроэнергию. В США, когда люди возвращаются с работы, вырастают тарифы на потребление энергии. Использование PowerWall позволяет накопить электричество от альтернативных источников в течение дня, а затем потреблять её в вечернее время суток.

Автозаправочная станция для машин Tesla будет доступна по всему миру

Накопитель энергии может стать запасным источником питания на случай, если будет отключено центрально энергоснабжение. Полного запаса ёмкости хватит на обеспечение дома в течение нескольких часов. Излишки можно продавать соседям.

Доступно две версии: PowerWall и PowerWall 2.0. Отличаются они запасом энергии. Первая версия имеет два варианта: на 7 кВч ($3000) и 10 кВч ($3500). Вторая версия предлагает ёмкость на 14 кВч за 5,5 тысяч долларов.

Система из солнечных панелей и Tesla PowerWall, смонтированной на фасаде дома

Использование этой новации возможно и на производстве. Два, три и более аккумулятора можно объединить в одну систему и увеличить запас резервной энергии в разы. Всего можно соединять до 9 накопителей Tesla. Маленькие производства могут работать только на альтернативной энергии благодаря технологии американской компании.

Практическую пользу дополняет красивый внешний вид. Аккумулятор Tesla не только не испортит интерьер любого помещения, но в некоторых случаях сможет его дополнить. Размеры у него небольшие, много места он не занимает.

PowerWall не портит внешний вид, и имеет влагозащищенный IP65 корпус и может размещаться на стене дома для дозарядки автомобиля

Внедрение новации может статьи большим шагом в будущее, в возможности скоро отказа от использования традиционных источников энергии. Это сделает окружающую среду чище и позволит нормализовать проблемы с изменением климата.

Альтернатива для России

Техника Tesla на российском рынке не имеет особого распространения, возможно дело в высокой стоимости оборудования. Подсчитаем, цена в США за единицу оборудования составляет $5500 для PowerWall 2.0 на 14 кВт*ч. Инсталляция стоит $1500, при увеличении количества оборудования цена увеличивается на $100.

С инсталляцией стоимость PowerWall 2.0 составит $7000/1шт. При депозите в $500 граждане могут стать обладателями накопителя.

При наличии солнечных модулей на 4 кВт дом не зависит от городской энергии.

При стоимости солнечных панелей порядка $200/шт за 250 Вт, нужно 16 панелей и один инвертор, чтобы получить 100% энергонезависимый дом, который питается от солнечной энергии и Powerwall. Это условие справедливо при потреблении дома 10 кВт/день (400 Вт/час).

Стоимость энергии в США 10 руб/день, 2 руб/ночь, стоимость оборудования будет составлять порядка $14000. Банки дают кредиты при взносе 10% от стоимости товара под 2-3% годовых, таким образом, за $140 долларов в месяц потребитель сможет заряжать машину и обеспечивать энергией дом.

В России все печальнее. Стоимость электроэнергии составляет 3-6 руб/кВт. Стоимость оборудования пройдя через таможню будет составлять на 54% больше. Только накопитель PowerWall 2.0 увеличится в стоимости до $10000 без учета монтажа и доставки до объекта.

Компании, для которых вопрос в обеспечении резервным источником питания является приоритетным обязаны потратить значительные средства на покупку оборудования либо создавать альтернативные сборки. Поэтому когда до нас дойдут накопители энергии - вопрос без ответа. Основным направлением компании Илона Маска является рынок энергетики США.

Механическим накопителем (МН), или аккумулятором ме­ханической энергии, называется устройство для запасания и хранения кинетической или потенциальной энергии с по­следующей отдачей ее для совершения полезной работы.

Как и для любого вида накопителей энергии (НЭ), харак­терными режимами работы МН являются заряд (накопление) и разряд (отдача энергии). Хранение энергии служит проме­жуточным режимом МН. В зарядном режиме к МН подводится механическая энергия от внешнего источника, причем конк­ретная техническая реализация источника энергии определяется типом МН. При разряде МН основная часть запасенной им энергии передается потребителю. Некоторая часть накопленной энергии расходуется на компенсацию потерь, имеющих место в разрядном режиме, а в большинстве видов МН - и в режимах хранения.

Поскольку в ряде накопительных установок время заряД3 может намного превосходить время разряда (г3»гр), ^ возможно существенное превышение среднеразрядяой мой" ности Р Р над средней мощностью Р3 заряда МН. Таким образом, в МН накапливать энергию допустимо с помощью сравнительно маломощных источников.

Основные разновидности МН подразделяются на статичес­кие, динамические и комбинированные устройства.

Статические МН запасают потенциальную энергию посред­ством упругого изменения формы или объема рабочего тела либо при его перемещении против направления силы тяжести в гравитационном поле. Твердое, жидкостное или газообразное рабочее тело этих МН имеет статическое состояние в режиме хранения энергии, а заряд и разряд НЭ сопровождаются движением рабочего тела.

Динамические МН аккумулируют кинетическую энергию преимущественно во вращающихся массах твердых тел. Усло­вно - к динамическим МН можно отнести также накопительные- устройства ускорителей заряженных элементарных частиц, в которых запасается кинетическая энергия электронов или протонов, циклически движущихся по замкнутым траекториям.

Комбинированные МН запасают одновременно кинетическую и потенциальную энергию. Примером комбинированного МН может служить супермаховик из высокопрочного волокнистого материала, имеющего относительно малый модуль упругости. При вращении данного МН в нем наряду с кинетической энергией запасается потенциальная энергия упругой дефор­мации. При извлечении накопленной энергии из такого МН достигается использование обоих ее видов.

По уровню удельной накопленной энергии, приходящейся на единицу массы или объема аккумулирующего элемента, динамические инерционные МН существенно превосходят не­которые другие разновидности НЭ (например, индуктивные и емкостные накопители). Поэтому МН представляют большой практический интерес для многообразных применений в раз­личных отраслях техники и научных исследований.

Отдельные виды МН нашли к настоящему времени круп­номасштабное применение в электроэнергетике, например гид - Роаккумулирующие установки электрических станций. Зарядно - Разрядный цикл их работы достигает десятков часов.

Для инерционных МН характерны кратковременные раз- Рядные режимы. Отбор энергии от МН сопровождается Уменьшением угловой скорости маховика до допустимого Уровня. В отдельных случаях торможение может происходить вплоть до полной остановки маховика. Возможны «ударные» Разряды, отличающиеся одноразовым или циклическим от­бором запасенной энергии, причем вследствие большого ки­нетического момента и малого времени разряда МН снижение Угловой скорости его ротора относительно невелико, хотя 0тДаваемая мощность может достигать достаточно высоких значений. В таком режиме МН особые требования предъяв­ляются к обеспечению прочности вала. Под воздействием крутящего момента в вале возникают опасные касательные напряжения, ча. сть кинетической энергии ротора переходит в потенциальную энергию упругих деформаций кручения вала. Для преодоления указанных затруднений в отдельных конст­рукциях МН предусматриваются упругие или фрикционные муфты .

Статические МН сохраняют запасенную энергию, находясь в неподвижном состоянии. Носителями потенциальной энергии в них служат упруго деформированные твердые тела или сжатые газы, находящиеся под избыточным давлением, а также массы, поднятые на высоту относительно земной поверхности. Типичными примерами статических МН являются: растянутые или сжатые пружины, резины; газобаллонные аккумуляторы и пневмоаккумуляторы; ударные устройства различных копров, например для забивания свай, использующие энергию масс в поднятом состоянии; водохранилища гидроаккумулирующих электростанций, баки водонапорных установок. Приведем ос­новные энергетические соотношения и характерные параметры некоторых типовых устройств.

Рассмотрим МН с упругими элементами.

Полагаем твердотельную систему линейной, тогда упругий накопительный элемент имеет постоянную жесткость (или упругость) N = Const. Действующая на него сила F =Nx пропор­циональна линейной деформации х. Совершенная при заряде МН элементарная работа dW =Fdx . Полная запасенная энергия

W = J Fdx= J Nxdx = NAh2/2-FaAh/2, Oo

Где Ah - результирующая деформация, ограниченная, например, Допустимым напряжением ар материала; Fn = NAh -приложен­ная сила.

Оценим удельную энергию Wya = Wj М, приходящуюся на единицу массы M = yV =ySh пружины или стержня объемом V и сечением S , материал которых имеет плотность у и работа­ет на разрыв в пределах закона Гука a = xfE , причем X *=xfh - относительная деформация, Е -модуль упругости (Юнга), G^Gp. Введя da = Edx можем записать DW =Fhdx *=Fhdo и dWya = dW /ySh = Fda /ySE , откуда при C = F /S находим

Wya=](aljE)da = a2J(2jE). О

Для стальных пружин примем с„ = 8 108 Н/м " Е= 2 ,1-1011 Н/м2, у = 7800 кг/м3, тогда Wya ^200 Дж /кг. Ана­ Логичный расчет для технической резины дает ^уд^350 Дж/кг, однако из-за гистерезисного характера зависимости F = F (X ) В цикле «заряд-разряд» возникающие потери и нагрев приводят К постепенному старению (разрушению) резины, нестабильности й ухудшению ее упругих свойств.

Газоаккумулирующая система находится в механически не­равновесном состоянии по отношению к окружающей среде: при равенстве температур системы и окружающей среды (Т=Т0С) давление системы р>р0,с, поэтому система может совершать работу. Запас упругой энергии сжатого в баллоне объемом V газа составляет

W =P{ vdp=v{p2-pi).. (4.1)

На единицу массы М любого сжатого газа согласно (4.1) приходится удельная энергия

Wya=W/M=V(p2-Pl)IM=Aply. (4.2)

На основании (4.2) при К=1м3 значение W - WysM чис­ленно равно перепаду давления Ар=р1-р1. Например, если А/? = 250 105 Па (начальное давление р! = Ю5Па), то ИЛ=25-106 Дж независимо от химического состава газа. Мак­симальное значение Wya при расширении сжатого газа до нулевого давления при данной температуре согласно уравнению Менделеева - Клапейрона PV - MvRyT составляет

Wya =WlM=RyTI», (4.3)

Где ц = М/Мц - молярная масса (кг/кмоль); Ry& ~8,314 кДж/(кмоль К) - универсальная газовая постоянная при Тх273 К; /?«105Па; Мм - количество киломолей в газе массой М.

Из (4.3) видно, что наиболее эффективно применение в МН легких газов. Для самого легкого газа - водорода (ц = 2 кг/кмоль) при Г=300 К удельная энергия ~1250 кДж/кг (или 1250 Дж/г). В (4.3) давление в явном виде не входит, так как Wya определяется по (4.2) отношением избыточного давления газа к его плотности. Последняя при повышении давления и Г= const возрастает по линейному закону (в изотермическом процессе PV = Const). Следует заме­тить, что целесообразные для эффективного применения рас­сматриваемых МН высокие давления обусловливают по сооб­ражениям прочности существенную массу газовых баллонов, с учетом которой значение Wya установки в целом может снижаться почти на порядок по сравнению с fVya из (4.2), (4.3). Оценку прочности баллонов можно провести, пользуясь Расчетными соотношениями § 4.5.7.

Рассмотрим гравитационные накопители энергии.

Гравистатическая энергия притяжения Земли (на уровне оря) оценивается достаточно высоким показателем "уд = 61,6 МДж/кг, который характеризует работу, необходи­мую для равномерного перемещения тела массой Мх = Кг с земной поверхности в космическое пространство (для срав­нения укажем, что это значение PVya приблизительно в раза больше химической энергии 1 кг керосина). При подъеме груза массой М на высоту h = x 2 - xl запасенная потенциальная энергия

W =jgMdx=gMh, (4.4)

Где M = const, g=9,8l м/с2. Согласно (4.4) удельная энергия Wya =Wj M =gh зависит только от высоты h . Запасенная энергия высвобождается при падении груза и совершении соответствующей полезной работы в результате перехода потенциальной энергии в кинетическую. Наибольшую удельную кинетическую энергию в природе при падении могут развивать метеориты, для которых Wya^60 МДж/кг (без учета затрат энергии на трение в атмосфере).

Непосредственное использование гравистатических сил, со - здабаемых природными массами, практически невозможно. Однако, перекачивая воду в поднятые искусственные водо­хранилища или из подземных водохранилищ на поверхность, можно накопить достаточно большое количество потенциаль­ной энергии для крупномасштабных применений в электроэнер­гетических системах. Если разность уровней h = 200 м, то в расчете на массу воды М=103кг запасенная энергия по (4.4) равна И>"=1962 кДж, удельная энергия Wya = WjM = 1,962 кДж/кг.

Рассмотрим инерционные кинетические МН.

Кинетическую энергию в принципе можно запасать при любом движении массы. Для равномерного поступательного движения тела массой М со скоростью v кинетическая энергия W =Mv 2 / 2. Удельная энергия Wya =W / M = v 2 j 2 зависит (квад­ратично) только от линейной скорости тела. Тело, движущееся с первой космической скоростью км/с, имеет удельную

Энергию Wyax32 МДж/кг.

Для разнообразных энергетических и транспортных примене­ний рациональны МН вращательного движения - инерционные МН (маховики). Запасенная кинетическая энергия W=J& / ~ определяется квадратом угловой скорости Q = 2nn (П - частота вращения) и моментом инерции J маховика относительно оси вращения. Если дисковый маховик имеет радиус г и массу М = yV (V -объем, у - плотность материала), т°

J^Mr2/2 = yVr2j2 и W=n2Mr2n2 = n2yVr2n2. Соответствующая удельная энергия (на единицу М или V) составляет FV /M =n *r 2n 2 , Дж/кг и lV 0ya =W /V =n 2yr 2n 2 , Дж/м3. Значения Q и п при заданном размере г ограничиваются линейной окружной скоростью v = Q .r = 2mr , связанной с до­пустимым разрывающим напряжением материала ар. Известно, что напряжение а в дисковом или цилиндрическом роторе МН зависит от v2. В зависимости от геометрической формы металлических маховиков для них характерны допустимые предельные скорости на периферии приблизительно от 200 до 500 м/с.

Накопленная энергия, в частности для тонкого ободкового маховика, W =Mv /2 (М -масса вращающегося кольца). Удельная энергия Wya =W /M = v 2 /2 не зависит от размеров кольца и определяется соотношением параметров Ор/у его материала (см. § 4.5.1, где показано, что v 2 = opj У). Следует отметить, что аналогичная закономерность для Wya~avjу имеет место также в индуктивных накопителях энергии (см. гл. 2), хотя они существенно отличаются от МН по физической природе. В общем случае при изготовлении накопительных элементов МН необходимо применять материалы с повышен­ными значениями Gp/y> 105 Дж/кг. Наиболее подходящими материалами являются высокопрочные легированные стали, титановые сплавы, а также легкие алюминиевые сплавы (типа «дюраль») и магниевые сплавы (типа «электрон»). Применяя металлические материалы, можно получить удельную энергию МН до Wm = 200-300 к Дж/кг .

Предназначенные длй создания маховиков с особо боль­шими удельными энергиями (супермаховиков) тонковолокнис­тые материалы теоретически могут обеспечить следующие уровни показателя Wya: стеклянные нити-650 кДж/кг, квар­цевые нити - 5000 кДж/кг, углеродные волокна (со структурой алмаза)-15000 кДж/кг . Нити (или выполненные из них ленты) и клеющие смолы образуют композитную конструкцию, прочность которой ниже, чем у исходных волокон. С учетом элементов крепления в реальных супер - маховиках практически достигаются значения Жуд меньше Указанных, но все же относительно более высокие, чем в других Разновидностях МН. Супермаховики допускают окружные скорости до v «1000 м/с. Техническая реализация таких Устройств требует обеспечения специальных условий. Например, Необходима установка маховика в вакуумированном кожухе, так как указанные значения v соответствуют сверхзвуковым скоростям в воздухе (число Маха Ма>1), которые в общем СлУчае могут вызывать целый ряд недопустимых эффектов: Появление скачков уплотнения воздуха и ударных волн, резкое Повышение аэродинамического сопротивления и температуры.

А -масса на жесткой струне; б -упругий обод

Многослойные волокнистые супермаховики обладают достаточ­но высокой надежностью и безопаснее в эксплуатации, чем сплошные маховики. При недопустимых нагрузках, обуслов­ленных инерционными силами, разрушаются" только наиболее напряженные наружные слои волоконной композитной конст­рукции супермаховика, тогда как разрушение массивного маховика сопровождается разлетом его разорвавшихся частей.

Сочетание свойств статического и динамического МН имеет место в различных устройствах. Простейшим из них является колеблющийся маятник. Циклический процесс взаимного преоб­разования потенциальной энергии в кинетическую может под­держиваться достаточно длительно, если компенсировать по­тери в маятниковом механизме.

Рассмотрим иллюстративные примеры МН, запасающих при заряде одновременно кинетическую и потенциальную энергию . Они демонстрируют принципиальные возмож­ности совместного практического использования обоих видов накопленной механической энергии. На рис. 4.1, а показан груз массой М, вращающийся вокруг центра О на абсолютно жесткой струне длиной /, отклоненной от вертикального положения на угол ср. Линейная скорость v соответствует вращательному движению М по окружности радиуса г. Потен­циальная энергия груза Wn =gMh обусловлена его подъемом на высоту h в результате отклонения. Кинетическая энергия груза составляет 1FK = 0,5 Mv 2 . На груз действует сила F = F„ + Fr. Ее инерционная компонента равна FK = Mv lr> значение гравитационнои компоненты F T = gM . Поскольку F„/Fr = r2/rg = tg(D, постольку Wn /WK = 2h /rtg ^>. Если Учест^! что A = /(l - coscp) и r = /sincp, то /г/г = (1 - coscp)/sinср. Таким образом, W „l lFK = 2coscp/(l +cos(p), и в случае ср->0 получаем Wn/WK->1. Следовательно, при малых углах ср запасенная энергия fV=JVK+Wn может распределяться на равные част (WЗначение Wn можно увеличить, если закрепить груз на упругом подвесе (прутке или струне).

Другим примером совместного накопления W и WK служит вращающийся тонкоободковый маховик (рис. 4.1, б), облада­вший упругостью (жесткостью) N. Натяжение в ободе ^р = NAI пропорционально упругому удлинению А/=2л(г -г0), вызванному инерционными силами AFr = AMv 2 /г, распределен­Ными по окружности обода радиусом г. Равновесие элемента обода массой 2ДМ=2(Л//2л;)Д(р определяется соотношением 2A/v = 2A/7(()sinAcp^Ai^Acp, откуда 0,5 Mv 2 = 2K 2 (r - r 0 )N . Сле­довательно, кинетическая энергия обода lVK = 2n 2 (r - r 0 )N . По­скольку запасенная потенциальная энергия }