Сущность электромагнитной и электрической энергии

Если в пространстве существует электромагнитное поле, то в произвольном объеме V имеется энергия

плотность электрической энергии Дж/м3,

плотность магнитной энергии, Дж/м3 .

Поскольку электромагнитное поле существует в виде волн, поле будет перемещаться в пространстве. В частности, энергия будет выходить или входить в объем V. Для оценки энергии электромагнитных волн введена физическая величина, называемая вектором Пойнтинга и равная векторному произведению векторов и :

Величина вектора Пойнтинга


где б – угол между векторами и . В идеальном диэлектрике П = EH.

Вектор Пойнтинга перпендикулярен плоскости расположения векторов и и его направление определяется «правилом винта» при вращении к по кратчайшему расстоянию (рис.1)

Размерность величины вектора - Вт/м2. Поэтому П – это энергия электромагнитного поля, проходящая в единицу времени через поверхность единичной площади, т.е. плотность потока мощности.

Энергия электромагнитного поля, выходящая из объема V в единицу времени, определяется формулой

где под интегралом – скалярное произведение векторов и , а интеграл берется по замкнутой поверхности S, ограничивающий объем V.

В случае, если диэлектрик в объеме V - неидеальный (), то возникают токи проводимости плотностью и, в соответствии с законом Джоуля – Ленца, часть энергии электромагнитного поля преобразуется во внутреннюю (тепловую) энергию диэлектрика .

Закон сохранения энергии определяется теоремой Пойнтинга:


где в левой части – скорость убывания энергии поля в объеме V, Pпот - количество теплоты, выделяющейся в 1 с в диэлектрике за счет протекания токов, т.е. мощность потерь, причем

где скалярное произведение - это плотность мощности потерь, т.е. количество теплоты, выделяемой в единицу времени.

В соответствии с теоремой Пойнтинга, изменение энергии электромагнитного поля в объему V происходит по 2-м причинам. Во - первых, за счет движения энергии в пространстве, во – вторых, за счет нагревания диэлектрика при протекании токов проводимости.



1.5 Монохроматические волны в идеальном пространстве

Радиосигнал представляет собой сложную зависимость величин E и H от времени, спектр сигнал содержит множество частот. Если сигнал узкополосный, то его спектр сосредоточен вблиз и несущей частоты и можно, в первом приближении, полагать, что колебания E(t) и H(t) имеют гармоническую форму, т.е. спектр содержит только одну частоту f, Гц (или циклическую частоту , рад/с).

Электромагнитные волны, в которых спектр колебаний содержит одну частоту, называют монохроматическими. Введение понятия монохроматических волн существенно упрощает анализ.

Предположим, что колебания распространяются вдоль одной оси z, т.е. E(t,z) и H(t,z) - функции 2-х переменных: t и z. В некоторой точке пространства z = 0 имеется источник электромагнитного поля

где Em - амплитуда колебаний.

Аналогично изменяется во времени и H(t,0). Считаем, что источник колебаний создает поле, которое не меняется по координатам x и y. В точке напряженность электрического поля

где v- скорость распространения волны, или

Постоянная

называется фазовым множителем. Если учесть, что , а длина волны


и имеет другое название – волновой множитель, или волновое число.

Мгновенная фаза колебаний

Функция времени и координаты. Если объединить в пространстве все точки, в которых колебания синфазны, т.е. , то получим поверхность равных фаз. На этой поверхности в данный момент времени значения E одинаковы. Поверхность равных фаз называется волновой поверхностью. В рассматриваемом случае волновая поверхность является плоскостью, простирающейся в пространстве бесконечно вдоль координат y и x.

а связь амплитуд напряженностей электрического и магнитного полей подчиняются формуле (1.5). Запишем, в каком соотношении находятся энергии электрического и магнитного полей в плоской волне.

Плотность энергии электрического поля

и учитывая (1.5), получим

Как и любая форма материи, электромагнитное поле обладает энергией, которая может распространяться в пространстве и преобразоваться в другие виды энергии.

Сформулируем уравнение баланса электромагнитного поля применительно к некоторому объему V, ограниченному поверхностью S. Пусть, в этом объеме, за счет сторонних источников, выделяется электромагнитная энергия. Из общефизических соображений, очевидно, что мощность сторонних источников будет расходоваться на потери, на изменение энергии и частично будет рассеиваться на поверхности S, уходя во внешнее пространство.

Будем полагать, что среда в объеме V однородная и изотропная. Мощность в объеме V выделяется за счет протекания сторонних токов, в дальнейшем будем пользоваться известными материальными уравнениями:

; ; (2)

Материальные уравнения в форме (2) не позволяют учесть потери связанные с явлением поляризации и намагничивания вещества. Уравнение баланса в форме (1) дает качественное представление о балансе энергии. Для получения уравнения необходимо перейти к векторам электромагнитного поля, т.е. воспользоваться уравнениями Максвелла. Для получения количественного соотношения обратимся к уравнениям Максвелла.

Запишем первое уравнение Максвелла с учетом сторонних токов:

Размерность входящих в (3) составляющих . Они являются векторными величинами.

Для получения уравнения, аналогичного (1) , надо уравнение (3) преобразовать в скалярное и обеспечить размерность слагаемых в Ваттах. Указанный алгоритм можно реализовать, если каждое из слагаемых умножить скалярно на и проинтегрировать по объему.

Умножим все составляющие на Е, получим:

Преобразовав левую часть (4) используем известное векторное тождество:. Из полученного тождества вытекает следующее выражение:(5)

Выразим, используя второе уравнение Максвелла:

Подставляя правую часть (6) в левую часть (4) получим:

Преобразуем предыдущее выражение следующим образом:

Также (7) можно записать следующим образом:

В последнем соотношении (9) мы сделаем следующее:

1) поменяем порядок дифференцирования по времени, и интегрирования по объему.

2) При интегрировании по объему воспользуемся теоремой Остроградского - Гаусса.

Для цилиндрического проводника с током I: .

Для элементарного цилиндрического проводника, концы которого перпендикулярны линиям тока:

Для произвольного объема:

В выражении (11) первый интеграл это мощность потерь.

В левой части (9) стоит мощность, выделяемая сторонними токами в объеме V. Ток проводимости, который представляет собой упорядоченное движение заряженных частиц, отдает энергию электромагнитного поля, если частицы попадают в тормозящее электромагнитное поле.

Для того, чтобы электромагнитное поле было тормозящим необходимо чтобы скалярное произведение удовлетворяло следующему условию: .

При этом левая часть (9) становится положительной величиной.

Рассмотрим второе слагаемое правой части. Будем полагать, что поверхность S окружающая V является идеально проводящей

и проводимость среды в объеме равна нулю.

По условию поверхность S является идеально проводящей.

При этом уравнение баланса имеет следующий вид:

т.е. в рассматриваемом случае мощность сторонних источников может расходоваться на изменение энергии внутри объема. В правой части выражения (12) мы получили скорость изменения энергии .

В этом случае мощность сторонних токов рассеиваясь на поверхности S уходит во внешнее пространство. Таким образом, мы получили, что уравнение (9) полностью идентично формуле (1) .

Соотношение (9) было сформулировано Поинтингом (уравнение баланса энергии электромагнитного поля – теорема Пойнтинга).

Проанализируем несколько частных случаев,

которые следуют из теоремы Пойнтинга.

1. Энергия может поступать в объем V не только за счет сторонних источников. Поток энергии, определяемой интегралом , может быть направлен из внешнего пространства внутрь объема V.

2. Сторонние источники могут не только отдавать энергию, а также вбирать энергию электромагнитного поля. Поток заряженных частиц вбирает энергию электромагнитного поля, если этот поток попадает в ускоряющее электрическое поле. При этом скалярное произведение , а левая часть в соотношении (9) становится отрицательной величиной.

3 . Пусть, поток энергии, определяемой последним слагаемым в соотношении (9) , направлен внутрь объема, причем, мощность, которая поступает, таким образом, расходуется на джоулевы потери и вбирается сторонним источником так, что энергия внутри объема V остается неизменной. В этом случае соотношение (9) преобразуется к виду (15)

Так как слева стоит полная поступающая через поверхность энергия, то вектор можно трактовать как плотность потока энергии (вектор Пойнтинга).

Вектор Пойнтинга равняется пределу отношения энергии, проходящей за время DТ, через поверхность DS, перпендикулярно направлению распространения энергии, при DS и DТ стремящихся к нулю. В изотропных средах направление совпадает с направлением распространения энергии.

4.2. Плотность энергии электромагнитного поля.

Из предыдущего параграфа известно, что запас электромагнитного поля в объеме V:(1)

Правую часть можно представить в виде двух слагаемых, одно из которых зависит только от электрического поля, а другое только от магнитного.

Так как энергии представлены в виде интегралов по объему, то подынтегральные выражения можно трактовать как объемную плотность энергий, а их сумму - как объемную плотность энергии электромагнитного поля.

Принцип суперпозиции , которому удовлетворяют векторы электромагнитного поля, не распространяется на энергию электромагнитного поля.

Пусть в объеме V существует независимо два электромагнитных поля. Энергия суммарного электромагнитного поля:

где W 12 - взаимная энергия электромагнитного поля. Она может быть как положительной, так и отрицательной, т.е. суммирование электромагнитных полей может приводить как к увеличению энергии результирующего поля, так и к уменьшению ее. Если электрический и магнитный вектора, суммируемых полей, взаимно ортогональны, то очевидно, что взаимная энергия будет равна нулю. В случае переменных процессов электромагнитная энергия непрерывно изменяется. Эти изменения в каждой точке можно описать следующим соотношением:

Так как левая часть и первое слагаемое есть подынтегральные выражения, то их можно трактовать объемной плотностью мощности сторонних источников и сторонних потерь.

Соотношение (8) есть дифференциальная форма теоремы Пойнтинга.

4.3. Скорость распространения энергии электромагнитных волн.

В пространстве, в котором распространяется электромагнитная энергия, выделим энергетическую трубку (некий протяжный объем, на боковой поверхности которого вектор Пойнтинга равен нулю).

Пусть, за время Dt через боковую поверхность DS прошла энергия DW и оказалась сосредоточенной между сечениями DS и DS 1 , между которыми, расстояние Dl. Направление единичного вектора совпадает с направлением распространения энергии.

Тогда скорость распространения энергии:

Энергию, заключенную между торцами DS и DS 1:

где w - объемная плотность энергии, а DS ’ - среднее сечение.

Если промежуток Dt взять достаточно малым, чтобы не успел измениться, то энергию:

Приравняем (2) к (3) и выразим . Получим:

Найдем предел от соотношения (4) при Dt®0. Получим:

Получили общее выражение для величины скорости распространения энергии. Если предположить, что векторы и , а стало быть, и неизменны в пределах поперечного сечения цилиндра, то в этом случае, векторы и совпадают по направлению распространения энергии.

4.4. Уравнения Максвелла для монохроматического поля.

4. Метод комплексных амплитуд.

Любые переменные электромагнитные процессы можно представить в виде дискретного или непрерывного спектра гармонических электромагнитных полей. Поэтому в дальнейшем будем анализировать гармонические электромагнитные процессы (монохроматические), так как сигнал любой сложности можно представить как суперпозицию гармонических процессов. Обычно используют метод комплексных амплитуд.

Пусть имеется некоторый гармонический процесс:

ему в соответствие ставится: (2)

Аналогично и для векторных величин. Пусть, есть вектор изменяющийся по гармоническому закону:

Ему соответствует комплексная величина:

Если, мгновенные скалярные и векторные функции удовлетворяют некоторым линейным уравнениям, то этим же уравнениям удовлетворяют и их комплексные аналоги.

Использование метода комплексных амплитуд существенно упрощает решение задач с геометрическими электромагнитными процессами. Причина этого: дифференцирование по времени от комплексных амплитуд эквивалентно просто домножению на jw, а интегрирование по времени эквивалентно делению на jw.

5. 4.5. Система уравнений монохроматического (гармонического) поля.

Известно, что уравнения Максвелла относятся к линейным дифференциальным уравнениям. Поэтому в случае гармонических электромагнитных полей в уравнениях Максвелла можно перейти к комплексным амплитудам.

Т.е. если , то , где

Используя понятие комплексных амплитуд, получим:

(1) т.к. , (2)

(4) , где(5)

Комплексная диэлектрическая проницаемость среды.

Входящее в соотношение (5) отношение называется тангенсом угла электрических потерь: (6)

Комплексная диэлектрическая проницаемость в форме (5) справедлива для сред, в которых имеются только джоулевы потери. В общем случае, когда необходимо учесть диэлектрические потери представляется в следующем виде: (7)

(8) – тангенс угла диэлектрических потерь

Этот общий случай позволяет также учесть потери, связанные с эффектом поляризации в переменном электрическом поле. Наличие диэлектрических потерь приводит к появлению фазового сдвига между электрическими векторами D и Е. Величина которого: (9)

Переходя во втором уравнении Максвелла к комплексным амплитудам получим: (10) .

Где (11)

(12) - тангенс угла магнитных потерь.

Магнитные потери связаны с эффектом периодического изменения намагниченности вещества во внешнем поле. Наличие магнитных потерь приводит к фазовому запаздыванию вектора В относительно вектора Н (явление Гистерезиса) в электромагнитных средах.

В случае гармонического поля при использовании метода комплексных амплитуд, возникает дополнительная возможность учесть потери, связанные с эффектами поляризации и намагничивания вещества.

В случае гармонических полей при использовании метода комплексных амплитуд 3 и 4 уравнения Максвелла являются следствием первых двух.

Поясним это:

В средах с проводимостью неравной нулю объемная плотность убывает и в случае установившегося электромагнитного процесса (к ним относятся гармонические колебания). Можно считать, что объемная плотность электрического заряда равна нулю. В этом случае третье уравнение Максвелла запишется следующим образом:

Это соотношение для среды с конечной проводимостью. Оно является справедливым и для не проводящих сред. Если в непроводящей среде рассмотрим гармонический процесс, то:

Всякое изменение свободных электрических зарядов сопровождается появлением в среде электрического тока, но при в среде невозможно появление тока удовлетворяющего закону Ома. Поэтому (13) является справедливым в случае гармонических процессов и для непроводящих сред.

Переходя в уравнении (13) к комплексным амплитудам, получим:

Покажем, что оно является следствием (4) . Возьмем дивергенцию от правой и левой части. Аналогично и для 4 уравнения Максвелла:

В случае гармонических полей они полностью описываются соотношениями(4) , (11) . Будем предполагать, что в рассмотренной области имеются сторонние источники. В этом случае выражения (4) , (11) не применимы. Для получения справедливых соотношений воспользуемся 1 уравнением Максвелла:

Рассмотрим 3 уравнение Максвелла. Возьмем дивергенцию от соотношения (16) .

Для сторонних токов:

Окончательно получим: (18)

В случае гармонических электромагнитных полей мы должны воспользоваться соотношением (17) и (18) , при этом (4) и (11) останутся без изменений.

Итак, когда имеются сторонние источники:

Уравнения Максвелла без учета сторонних источников:

Подставляя вторую систему в первую, с использованием метода комплексных амплитуд, получим:

В дальнейшем индекс m будем формально опускать.

5.6. Уравнения баланса для средней за период мощности.

Теорема Умова-Пойнтинга и соответствующее ей аналитическое соотношение

были сформулированы для мгновенных значений и остаются справедливыми в последний момент времени. Это соотношение - важнейшее в классе электродинамики.

При анализе гармонических электромагнитных процессов особый интерес представляют энергетические параметры, усредненные по периоду. Среднее за период значение: (2)

Получим уравнение баланса для средней за период значения мощности гармонического электромагнитного процесса. Необходимо для каждого из слагаемых уравнения (1) получить величину, определяемую соотношением (2) . Т. к. в соотношении (2) осуществляется интегрирование по времени, а анализируется гармонический электромагнитных процесс, то, естественно, надо воспользоваться методом комплексных амплитуд. Непосредственная замена мгновенных функций, соответствующими комплексными аналогами возможна только в линейных уравнениях. В данном случае непосредственная замена мгновенных векторов электромагнитного поля невозможна, так как выполняются следующие неравенства:

В случае нелинейных уравнений, переход к комплексным амплитудам осуществляют с помощью следующего соотношения:

Получим уравнение баланса для средней за период значения мощности гармонического электромагнитного поля. Сначала определим среднее за период значения функций входящие в (1).

Для начала получим среднее за период значение вектора Пойнтинга:

раскроем векторное произведение: (4)

Таким образом, сумму можно записать как удвоенную действительную часть любого из слагаемых:

Величина от времени не зависит. С учетом приведенных рассуждений, получаем:

Подставим (6) в (2) . Два последних слагаемых, в соотношении (6) , меняются с удвоенной частотой, т.е. половину периода принимают положительную величину, а другую половину - отрицательную. Поэтому и среднее за период значение равно нулю.

Величина, от которой берется действительная часть (8) называется комплексным вектором Пойнтинга.

(8) - комплексный вектор Пойнтинга.

Итак, (7) определяет среднее за период значение плотности потока энергии через поверхность S. Среднее за период значение потока мощности:

Рассмотрим каждое из слагаемых выражения (1) .

Таким образом, в результате проделанных нами вычислений, получили:

В среднем за период, мощность сторонних источников расходуется на потери внутри объема и частично уходит во внешнее пространство, через поверхность S.

6. 4.7. Уравнения баланса для комплексной мощности.

В радиотехнике часто пользуются понятием комплексной мощности. Так, если рассматривается гармонический процесс, то комплексную мощность сторонних источников можно записать:

Получим уравнение баланса для комплексных мощностей гармонического электромагнитного процесса. Уравнение баланса для комплексной мощности получается аналогично уравнению баланса для среднего за период значения. Удобно записать уравнение Максвелла сразу для комплексно-сопряженных величин:

Вновь полагаем, что потери в среде обусловлены конечной проводимостью:

Возьмем комплексное сопряжение от всех комплексных величин:

Умножим скалярно правую и левую части соотношения (1) на . Получим:

Воспользуемся векторным тождеством, из которого следует:

Выразим из тождества :

Будем предполагать, что магнитные потери в среде отсутствуют, тогда . Подставим в соотношение (3) : (4)

7. Проинтегрируем по объему:

Поделим на 2 и учтем, что во втором слагаемом стоит разность энергий

Выражение (7) запишем в виде системы из 2-х уравнений: одно устанавливает связь между активными мощностями, другое - между реактивными.

Получим: (8)

Как мы и ожидали, соотношение (8) совпадает с уравнением для средних за период мощностей. Из (9) следует, что реактивная мощность сторонних источников равна умноженной на 2w разности средних за период значений энергий + реактивный поток энергии, через поверхность S. Рассмотрим важное приложение к (8) и (9) . Будем предполагать, что объем V, для которого составлено уравнение баланса, является изолированной системой. В этом случае комплексный поток мощности, через поверхность S, равен нулю и уравнение баланса:

В этом случае происходит колебательный обмен энергией между электрическим и магнитным полями, т.е. один момент существует только электрическое поле, потом и то и другое, потом только магнитное и т.д. В том случае когда

мощность сторонних источников становится чисто активной:

и обмен энергиями происходит без участия сторонних источников. Если (11) не соблюдается, то для этого обмена необходимо участие сторонних источников. Изолированная система, в которой мощность сторонних источников чисто активна, т.е. выполняется равенство (11) , называется резонирующей изолированной системой, а условие (11) называется условием резонанса . Для характеристики изолированной колебательной системы вводят понятие добротности.

Под добротностью Q понимают:

Средняя за период энергия электрического поля:

При резонансе , тогда

Соотношения (6) , (7) были получены при условии, что . Потери в среде обусловлены конечной проводимостью

В этом случае общее выражение для баланса комплексных мощностей остается неизменным, но конкретное, аналитическое выражение для слагаемых, изменится. Мощность потерь записывается следующим образом:

В заключение этого параграфа приведем выражение для скорости распределения энергии, записанное через комплексные амплитуды:

Где DS - поперечное сечение.

В том случае, когда составляющие неизменны, получаем:

8. 4.8. Теорема единственности для внутренней и внешней задач электродинамики.

Уравнения Максвелла являются дифференциальными уравнениями в частных производных, поэтому они допускают множество решений. Из общефизических соображений, очевидно, что если полностью повторять условия опытов, то будем получать одно и то же распространение электромагнитного поля. Для обеспечения единственности решения электродинамических задач электромагнитное поле должно удовлетворять не только уравнениям Максвелла, но также должно удовлетворять ряду дополнительных условий. Они называются условиями единственности решения уравнений Максвелла. Выводы и доказательства формулируются теоремой единственности. Теорема единственности отдельно формулируется двух основных видов задач:

для внутренней и внешней задач электродинамики.

Требуется определить распределение электромагнитного поля внутри поверхности S (внутренняя задача). Определим распространение электромагнитного поля в пространстве, внешнем по отношению к объему V, ограниченному поверхностью S. ().

9. 4.9. Единственность решения внутренних задач.

Внутренние задачи электродинамики имеют единственное решение, если выполняется одно из следующих условий:

1 .Если в каждой точке М поверхности S задана проекция вектора на плоскость, касательную к поверхности S в точке М: - "Е" задача.

2 . Если в каждой точке M поверхности S задана проекция вектора на плоскость, касательную к поверхности S в точке М: - "Н" задача.

3 . Если на части поверхности S в каждой точке задана проекция вектора на плоскость, касательную к S в этой точке, а на другой части плоскости задана проекция вектора касательная к S в точке М:

- "ЕН" задача.

4 . Если в каждой точке поверхности S задано соотношение между проекциями векторов и на плоскость, касательную к S в точке М.

10. 4.10. Условия единственности внешних задач электродинамики.

Для обеспечения единственности решения внешних задач электродинамики необходимо выполнение одного из условий 1-4, плюс к этому должно выполнятся одно из условий, описывающее поведение электромагнитного поля при бесконечно удаленных точках (при r®¥).

1 . Принцип предельного поглощения () требует, чтобы эта зависимость была , т.е. каждая из составляющих поля должна убывать с увеличением расстояния быстрее, чем . В реальных средах имеются пусть очень малые, но конечные по величине потери, т.е. . Поэтому, в бесконечно удаленных точках, электромагнитное поле равно нулю.

2 . Если в среде отсутствуют потери и принцип предельного поглощения не применим, в этом случае векторы электромагнитного поля должны удовлетворять следующим соотношениям:

Условия Зоммерфельда.

Физически эти условия означают, что электромагнитные волны при r®¥ имеют вид сферических волн, расходящихся от источника электромагнитного поля.

Мы уже много раз показывали, что электромагнитное поле обладает энергией. Значит, распространение электромагнитных волн связано с переносом энергии (подобно тому, как распространение упругих волн в веществе связано с переносом механической энергии). Сама возможность обнаружения ЭМВ указывает на то, что они переносят энергию.

Для характеристики переносимой волной энергии русским ученым Н.А. Умовым были введены понятия о скорости и направлении движения энергии, о потоке энергии. Спустя десять лет после этого, в 1884 г., английский ученый Джон Пойнтинг описал процесс переноса энергии с помощью вектора плотности потока энергии .

Введем вектор - приращение плотности электромагнитной энергии, где сама величина w определяется интегралом:

Объемная плотность энергии w электромагнитной волны складывается из объемных плотностей и электрического и магнитного полей:

Учитывая, что , получим, что плотность энергии электрического и магнитного полей в каждый момент времени одинакова, т.е. . Поэтому

Умножив плотность энергии w на скорость υ распространения волны в среде, получим модуль плотности потока энергии поток энергии через единичную площадку, перпендикулярную направлению распространения волны в единицу времени :

. (6.4.1)

Так как векторы и взаимно перпендикулярны и образуют с направлением распространения волны правовинтовую систему, то направление вектора совпадает с направлением переноса энергии, а модуль этого вектора равен EH (рис. 6.8).

Вектор плотности потока электромагнитной энергии называется вектором Умова–Пойнтинга :

. (6.4.2)

Вектор направлен в сторону распространения электромагнитной волны, а его модуль равен энергии, переносимой электромагнитной волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны.

В сферической электромагнитной волне, излучаемой ускоренно двигающимися зарядами, векторы направлены по параллелям, векторы - по меридианам, а поток энергии - по нормали (рис. 6.9).

Векторы Умова–Пойнтинга зависят от пространства и времени, так как от них зависят модули векторов напряженности электрического и магнитного полей. Поэтому часто пользуются параметром, называемым интенсивностью – модуль среднего значения вектора Умова–Пойнтинга:

. (6.4.3)

Интенсивность пропорциональна квадрату амплитуды:

. (6.4.4)

Зависимость интенсивности излучения от направления называют диаграммой направленности. Такая диаграмма для линейного излучателя показана на рис. 6.10.

Как доказал Герц, диполь сильнее всего излучает в направлении перпендикулярном по отношению к собственному направлению.

Ускоренно двигающиеся заряды излучают электромагнитную энергию в окружающее пространство. Вектор направлен вдоль радиуса и убывает обратно пропорционально r 2 . Излучение максимально в направлении, перпендикулярном вектору , и отсутствует вдоль этого вектора. Поэтому диаграмма направленности диполя имеет вид двух симметричных лепестков, как показано на рис. 6.10.

Давление света

Если электромагнитные волны поглощаются или отражаются телами (эти явления подтверждены опытами Герца), то из теории Максвелла следует, что электромагнитные волны должны оказывать на тела давление. Давление ЭМВ объясняется тем, что под действием электрического поля волны заряженные частицы вещества начинают упорядоченно двигаться и подвергаются со стороны магнитного поля действию силы. Однако, значение этого давления ничтожно мало.

Давление света и электромагнитный импульс настолько малы, что непосредственное их измерение затруднительно. Так, зеркало, расположенное на расстоянии 1 м от источника света в миллион свечей (кандел), испытывает давление 10 - 7 Н/м 2 . Давление излучения Солнца на поверхность Земли равно 4,3×10 - 6 Н/м 2 , а общее давление излучения Солнца на Землю равно 6×10 8 Н, что в 10 13 раз меньше силы притяжения Солнца.

Световое давление было впервые обнаружено и измерено в 1899 г. в Москве русским ученым П.Н. Лебедевым (1866-1912). Его результаты, как и более точные измерения последующих исследователей, согласуются с теорией в пределах ошибок опыта - до 2 %.

На рис. 6.11 изображен прибор, с помощью которого было измерено давление света, – радиометр . Свет, отраженный посеребренной поверхностью каждой лопасти 2, 3, передает вдвое больший импульс по сравнению со светом, поглощенным зачерненной поверхностью 1, 4. Вследствие этого лопасти начинают вращаться по часовой стрелке.

где J – интенсивность света, K – коэффициент отражения.

Опыты Лебедева имели огромное значение для утверждения выводов теории Максвелла о том, что свет представляет собой ЭМВ.

Давление света играет существенную роль в двух противоположных по масштабу областях явлений.

Так, например, гравитационное притяжение верхних слоев звезд к центру в значительной мере уравновешивается силой давления светового потока, идущего от центра звезды наружу. В атомных процессах существенной является отдача, испытываемая возбужденным атомом при излучении им света в силу малости массы атома. Световое давление может создавать ускорение атомов до , где g – ускорение свободного падения.

Впервые гипотеза о световом давлении была высказана в 1619 г. немецким ученым И. Кеплером (1571-1630) для объяснения отклонения хвостов комет, пролетающих вблизи Солнца (рис. 6.12).

Возможными областями физического применения светового давления могут служить процессы разделения смеси изотопов газов, ускорение микрочастиц и создание условий для протекания управляемой термоядерной реакции.

Электромагнитная масса и импульс

Существование давления ЭМВ приводит к выводу о том, что электромагнитному полю присущ механический импульс.

Выражая импульс как (поле в вакууме распространяется со скоростью света с ), получим

. (6.4.5)

Это соотношение между массой и энергией ЭМП является универсальным законом природы, справедливым для любых тел независимо от их внутреннего строения.

Импульс электромагнитного поля, связанного с движущейся частицей, – электромагнитный импульс – оказался пропорциональным скорости частицы υ, что имеет место и в выражении для обычного импульса m υ, где m – инертная масса заряженной частицы. Поэтому коэффициент пропорциональности в полученном выражении для импульса называют электромагнитной массой :

, (6.4.6)

где е – заряд движущейся частицы, а – ее радиус.

И даже если тело не обладает никакой иной массой, оказывается, что между импульсом и скоростью заряженной частицы существует соотношение:

. (6.4.6)

Это соотношение как бы раскрывает происхождение массы – это электродинамический эффект. Движение заряженной частицы сопровождается возникновением магнитного поля. Магнитное поле сообщает телу дополнительную инертность – при ускорении затрачивается работа на создание магнитного поля, при торможении –работа против затормаживающих сил индукционного происхождения. По отношению к движущемуся заряду электромагнитное поле является средой, неотделимой от заряда.

В общем случае можно записать, что полный импульс равен сумме механического и электромагнитного импульсов; возможно, что другие поля вносят и иные вклады в полную массу частицы, но, определенно, в полной массе есть электромагнитная часть:

, .

Если учесть релятивистские эффекты сокращения длины и преобразования электрических и магнитных полей, то для электромагнитного импульса получается также релятивистски инвариантная формула:

. (6.4.7)

Таким же образом изменяется релятивистский механический импульс.

В текстах, публикуемых на этом сайте, часто встречаются различные термины, которые являются названиями физических величин. Многое мы изучали еще в школьном курсе физике, но знания имеют свойство забываться без постоянного употребления. В серии заметок, объединенных под общим заголовком «Вспоминаем физику» (можно было бы назвать «Снова в школу») мы постараемся напомнить вам, что означают основные термины, какие физические величины за этими терминами скрываются, как они связаны между собой, в каких величинах они измеряются. В общем, дать те основы, которые нужны для понимания публикуемых материалов.

Сайт нас в целом посвящен методам и технологиям получения энергии (конкретно, из возобновляемых источников). Энергия нужна людям для отопления и освещения собственных жилищ, для того, чтобы приводить в движение различные механизмы, которые совершают полезную для людей работу. То есть нам нужно получить в конечном итоге один из трех видов энергии — тепловую, механическую и энергию света. Как будет сказано ниже, в физике различают еще несколько видов энергии, но для нас важны в первую очередь эти три вида. Закончу с предисловиями и приведу те определения энергии, которые приняты в физике.

Работа и энергия

Еще из школьного курса физики (а школу я окончил 50 лет назад) я помню утверждение «Энергия является мерой способности физической системы совершить работу». Википедия дает менее понятное определение, утверждая , что

«Эне́ргия — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется в этой системе на протяжении времени, в течение которого система будет являться замкнутой. Это утверждение носит название закона сохранения энергии.»

Энергия является скалярной величиной, для измерения которой применяются несколько разных единиц. Нам наиболее интересны джоуль и киловатт-час.

Джо́уль (русское обозначение: Дж; международное: J) - единица измерения работы, энергии и количества теплоты в Международной системе единиц (СИ). Джоуль равен работе, совершаемой при перемещении точки приложения силы, равной одному ньютону, на расстояние одного метра в направлении действия силы. В электричестве джоуль означает работу, которую совершают силы электрического поля за 1 секунду при напряжении в 1 вольт для поддержания силы тока в 1 ампер.

Впрочем, мы не будем углубляться в основы физики, выясняя, что такое сила и что такое один ньютон, просто примем понятие «энергия» за основу и запомним, что некое количество джоулей характеризует энергию, работу и количество теплоты. Еще одной величиной, с помощью которой измеряют количество энергии, является киловатт-час.

Килова́тт-час (кВт⋅ч) - внесистемная единица измерения количества произведенной или потреблённой энергии, а также выполненной работы. Используется преимущественно для измерения потребления электроэнергии в быту, народном хозяйстве и для измерения выработки электроэнергии в электроэнергетике.

Следует заметить, что правильно писать именно «кВт⋅ч» (мощность, умноженная на время). Написание «кВт/ч» (киловатт в час), часто употребляемое во многих СМИ и даже иногда в официальных документах, неправильно. Такое обозначение соответствует изменению мощности в единицу времени (что обычно никого не интересует), но никак не количеству энергии. Столь же распространённая ошибка - использовать «киловатт» (единицу мощности) вместо «киловатт-час».

В последующих статьях мы будем использовать джоуль и киловатт-час как единицы для оценки количества энергии или работы, имея в виду, что один киловатт-час равен 3,6·10 6 джоулей.

С точки зрения интересующих нас тем именно свойство энергии совершать работу является основополагающим. Мы не будем выяснять, как физика трактует понятие «работа», будем считать, что это понятие является первоначальным и не определяемым. Только еще раз подчеркнем, что количественно энергия и работа выражаются в одних единицах.

В зависимости от вида энергии или работы величина энергии рассчитывается разными способами:

Формы и виды энергии

Поскольку энергия, как сказано выше, является только мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие, различные формы энергии выделяются в соответствии с различными формами движения материи. Таким образом, в зависимости от уровня проявления, мож­но выделить следующие формы энергии:

  • энергия макромира - гравитационная или энергия притяжения тел,
  • энергия взаимодействия тел - механическая,
  • энергия молекулярных взаимодействий - тепловая,
  • энергия атомных взаимодей­ствий - химическая,
  • энергия излучения - электромагнит­ная,
  • энергия, заключенную в ядрах атомов, - ядерная.

Гравитационная энергия - энергия системы тел (частиц), обусловленная их взаимным гравитационным тяготением. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на опреде­ленную высоту над поверхностью Земли - энергия силы тя­жести. Таким образом, энергию, запасенную в водохранилищах гидроэлектростанций, можно отнести к гравитационной энергии.

Механическая энергия - проявляется при взаимодей­ствии, движении отдельных тел или частиц. К ней относят энергию движения или вращения тела, энер­гию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах - транспортных и техно­логических.

Тепловая энергия - энергия неупорядоченного (хаотичес­кого) движения и взаимодействия молекул веществ. Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопле­ния, проведения многочисленных технологических процес­сов (нагревания, плавления, сушки, выпаривания, перегон­ки и т. д.).

Химическая энергия - это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при хими­ческих реакциях между веществами. Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальваничес­ких элементах и аккумуляторах. Эти источники энергии ха­рактеризуются высоким КПД (до 98 %), но низкой емкостью.

Электромагнитная энергия - это энергия, порождаемая взаимодействием электрического и магнитного по­лей. Ее подразделяют на электрическую и магнитную энергии. Электрическая энергия - энергия движущихся по элек­трической цепи электронов (электрического тока).

Электромагнитная энергия проявляется также в виде электромагнит­ных волн, то есть в виде излучения, включающего видимый свет, инфракрасные, ультрафио­летовые, рентгеновские лучи и радиоволны. Таким образом, один из видов электромагнитной энергии - это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия - энергия, локализованная в ядрах ато­мов так называемых радиоактивных веществ. Она высвобож­дается при делении тяжелых ядер (ядерная реакция) или син­тезе легких ядер (термоядерная реакция).

В эту классификацию несколько не укладываются известные нам со школы понятия потенциальной и кинетической энергии. Современная физика считает , что понятия кинетической и потенциальной энергий (а также энергии диссипации) это не формы, а виды энергии :

Кинетическая энергия — энергия, которой обладают тела вследствие своего движения. Более строго , кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия - часть полной энергии, обусловленная движением. Когда тело не движется, кинетическая энергия равна нулю.

Потенциальная энергия — энергия, обусловленная взаимодействием различных тел или частей одного и того же тела. Потенциальная энергия всегда определяется положением тела относительно некоторого источника силы (силового поля).

Энергия диссипации (то есть рассеяния) — переход части энергии упорядоченных процессов в энергию неупорядоченных процессов, в конечном счёте - в теплоту.

Дело в том, что каждая из перечисленных выше форм энергии может проявляться в виде потенциальной и кинетической энергии. То есть виды энергии должны трактоваться в обобщенном смысле, ибо они относятся к любой форме движения и, следовательно, к любой форме энергии. Например, имеется кинетическая электрическая энергия, и это не то же самое, что кинетическая механическая энергия. Это кинетическая энергия движения электронов, а не кинетическая энергия механического движения тела. Точно так же потенциальная электрическая энергия это не то же самое, что потенциальная механическая энергия. А химическая энергия складывается из кинетической энергии движения электронов и электрической энергии их взаимодействия друг с другом и с атомными ядрами.

Вообще, насколько я понял при подготовке этого материала, пока не существует общепринятой классификации форм и видов энергии. Впрочем, возможно нам и не нужно до конца разбираться в этих физических понятиях. Важно только помнить, что энергия — это не какая-то реальная материальная субстанция, а только мера, предназначенная для оценки перемещения некоторых форм материи или преобразования одной формы материи в другую.

С понятием энергии и работы неразрывно связано понятие мощности.

Мо́щность - физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

В Международной системе единиц (СИ) единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду.

Мощность характеризует способность того или иного устройства совершать работу или производить энергию в течение определенного промежутка времени. Связь между мощностью, энергией и временем выражается следующим соотношением:

Киловатт-час (напомним, что это единица измерения энергии) равен количеству энергии, потребляемой (производимой) устройством мощностью один киловатт (единица мощности) в течение одного часа (единица времени) .

Отсюда и уже упомянутое выше равенство 1 кВт⋅ч = 1000 Вт ⋅ 3600 с = 3,6·10 6 Дж = 3,6 МДж.

Из трех рассмотренных на этой странице единиц именно мощность представляет для нас наибольший интерес, поскольку эта величина будет нам встречаться при рассмотрении и сравнении различных ветро- или гидро-генераторов и солнечных панелей. В этих случаях мощность характеризует способность этих устройств производить энергию. И наоборот, указание мощности на многих бытовых электроприборах характеризует потребление энергии этими приборами. Если мы хотим обеспечить некоторую совокупность бытовых приборов энергией, мы должны сопоставить суммарную потребляемую этими приборами мощность с суммарной мощностью, которую можем получить от производителей энергии.

Но подробнее о мощности мы поговорим в следующих статьях, посвященных конкретным видам энергии. И начнем с электрической энергии , рассмотрим, какими величинами характеризуется электричество и в каких единицах оно измеряется.

ЭНЕРГИЯ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ -количественная характеристика эл--магн. взаимодействия. Величина Э. э. п. может быть установлена на основании измерения работы, производимой эл--магн. полем (Лоренца силой )над носителями электрич. . Из определения напряжённости электрич. поля Е и индукции магн. поля В следует выражение для работы р , совершаемой над движущимися зарядами в единичном объёме в единицу времени:

В (1) -вектор электрич. тока; u a - скорость распределённого пространств. заряда сорта a, имеющего плотность r a ; суммирование производится по всем сортам пространств. зарядов (электронные заряды в металлах и , ионные заряды в газах и электролитах; связанные пространств. заряды, входящие в состав нейтральных молекул и магнетиков, и т. д.), участвующих во взаимодействии с эл--магн. полем.

С квантовой точки зрения эл--магн. поле представляет собой ансамбль фотонов, каждый из к-рых обладает энергией и импульсом , где w - частота излучения, k - его . Такое представление, необходимое при исследовании взаимодействия поля с квантовыми объектами (напр., с квантовым осциллятором), оказывается также удобным при изучении обмена энергией между полем и классич. заряж. частицами, поглощающими, излучающими и рассеивающими эл--магн. волны (напр., при рассмотрении Черенкова - Вавилова излучения, тормозного излучения) . Плотность энергии фотонного газа, находящегося в термодинамич. равновесии с окружающими материальными телами с темп-рой Т , определяется выражением

здесь а =7,91 10 -15 эрг/К -4 см -3 , темп-pa Т в градусах Кельвина.

Лит.: Тамм И. Е., Основы теории электричества, 10 изд., М., 1989; Ландау Л. Д., Лифшиц Е. М., Теория поля, 7 изд., М., 1988; их же, сплошных сред, 2 изд., М., 1982; Стрэттон Дж. А., Теория электромагнетизма, пер. с англ., М.- Л., 1948; Гинзбург В. Л., Распространение электромагнитных волн в плазме, 2 изд., М., 1967; его же, Теоретическая и астрофизика, 3 изд., М., 1987; Агранович В. М., Гинзбург В. Л., Кристаллооптика с учетом пространственной дисперсии и теория экситонов, 2 изд., М., 1979; Леонтович М. А., Введение в термодинамику. Статистическая физика, М., 1983.