Каким выражением определяется потенциальная энергия гравитационного взаимодействия. Потенциальная энергия гравитационного взаимодействия двух тел

Если в системе действуют только консервативные силы, то можно ввести понятие потенциальной энергии. Пусть тело массой m находит-


ся в гравитационном поле Земли, масса которой M . Сила взаимодей- ствия между ними определяется законом Всемирного тяготения

F (r ) = G Mm ,

где G = 6,6745 (8) × 10–11 м3/(кг× с2) - гравитационная постоянная; r - расстояние между их центрами масс. Подставляя выражение для гра- витационной силы в формулу (3.33), найдем ее работу при переходе тела из точки с радиус-вектором r 1 в точку с радиус-вектором r 2



r 2 dr



A 12 = òdA = òF (r )dr = -GMm òr

= GMm ⎜⎝r



1 r 1 r 1 2 2 1

Представим соотношение (3.34) в виде разности значений

A 12 = U (r 1) – U (r 2), (3.35)



U (r ) = -G Mm + C



для различных значений расстояний r 1 и r 2. В последней формуле C - произвольная константа.

Если тело приближается к Земле, которая считается неподвижной , то r 2 < r 1, 1/ r 2 – 1/ r 1 > 0 и A 12 > 0, U (r 1) > U (r 2). В этом случае сила тя- жести совершает положительную работу. Тело переходит из некото- рого начального состояния, которое характеризуется значением U (r 1) функции (3.36), в конечное, с меньшим значением U (r 2).

Если же тело удаляется от Земли, то r 2 > r 1, 1/ r 2 – 1/ r 1 < 0 и A 12 < 0,

U (r 1) < U (r 2), т. е сила тяготения совершает отрицательную работу.

Функция U = U (r ) является математическим выражением способ- ности гравитационных сил, действующих в системе, совершать ра- боту и согласно данному выше определению представляет собой по- тенциальную энергию.

Отметим, что потенциальная энергия обусловлена взаимным тя- готением тел и является характеристикой системы тел, а не одного тела. Однако при рассмотрении двух или большего числа тел одно из них (обычно Земля) считается неподвижным, а другие движутся от- носительно него. Поэтому часто говорят о потенциальной энергии именно этих тел в поле сил неподвижного тела.


Поскольку в задачах механики представляет интерес не величина потенциальной энергии, а ее изменение, то значение потенциальной энергии можно отсчитывать от любого начального уровня. Послед- нее определяет значение константы в формуле (3.36).

U (r ) = -G Mm .

Пусть нулевой уровень потенциальной энергии соответствует по- верхности Земли, т. е. U (R ) = 0, где R – радиус Земли. Запишем фор- мулу (3.36) для потенциальной энергии при нахождении тела на вы- соте h над ее поверхностью в следующей форме


U (R + h ) = -G Mm

R + h


+ C . (3.37)


Полагая в последней формуле h = 0, имеем

U (R ) = -G Mm + C .

Отсюда найдем значение константы C в формулах (3.36, 3.37)

C = -G Mm .

После подстановки значения константы C в формулу (3.37), имеем


U (R + h ) = -G Mm + G Mm = GMm ⎛- 1


1 ⎞= G Mm h .


R + h R


⎝⎜ R + h R ⎟⎠ R (R + h )


Перепишем эту формулу в виде

U (R + h ) = mgh h ,


где gh


R (R + h )


Ускорение свободного падения тела на высоте


h над поверхностью Земли.

В приближении h « R получаем известное выражение для потен- циальной энергии, если тело находится на небольшой высоте h над поверхностью Земли


Где g = G M


U (h ) = mgh , (3.38)

Ускорение свободного падения тела вблизи Земли.


В выражении (3.38) принята более удобная запись: U (R + h ) = U (h ). Из него видно, что потенциальная энергия равна работе, которую со- вершает гравитационная сила при перемещении тела с высоты h над


Землей на ее поверхность, соответствующую нулевому уровню по- тенциальной энергии. Последнее служит основанием считать выра- жение (3.38) потенциальной энергией тела над поверхностью Земли, говорить о потенциальной энергии тела и исключить из рассмотре- ния второе тело - Землю.

Пусть тело массой m находится на поверхности Земли. Для того чтобы оно оказалось на высоте h над этой поверхностью, к телу не- обходимо приложить внешнюю силу, противоположно направлен- ную силе тяжести и бесконечно мало отличающуюся от нее по мо- дулю. Работа, которую совершит внешняя сила, определяется сле- дующим соотношением:


R + h


R + h dr


⎡1 ⎤R + h

R

«Физика - 10 класс»

В чём выражается гравитационное взаимодействие тел?
Как доказать наличие взаимодействия Земли и, например, учебника физики?

Как известно, сила тяжести - консервативная сила. Теперь найдём выражение для работы силы тяготения и докажем, что работа этой силы не зависит от формы траектории, т. е. что сила тяготения также консервативная сила.

Напомним, что работа консервативной силы по замкнутому контуру равна нулю.

Пусть тело массой m находится в поле тяготения Земли. Очевидно, что размеры этого тела малы по сравнению с размерами Земли, поэтому его можно считать материальной точкой. На тело действует сила тяготения

где G - гравитационная постоянная,
М - масса Земли,
r - расстояние, на котором находится тело от центра Земли.

Пусть тело перемещается из положения А в положение В по разным траекториям: 1) по прямой АВ; 2) по кривой АА"В"В; 3) по кривой АСВ (рис. 5.15)

1. Рассмотрим первый случай. Сила тяготения, действующая на тело, непрерывно уменьшается, поэтому рассмотрим работу этой силы на малом перемещении Δr i = r i + 1 - r i . Среднее значение силы тяготения равно:

где r 2 сpi = r i r i + 1 .

Чем меньше Δri, тем более справедливо написанное выражение r 2 сpi = r i r i + 1 .

Тогда работу силы F сpi , на малом перемещении Δr i , можно записать в виде

Суммарная работа силы тяготения при перемещении тела из точки А в точку В равна:


2. При движении тела по траектории АА"В"В (см. рис. 5.15) очевидно, что работа силы тяготения на участках АА" и В"В равна нулю, так как сила тяготения направлена к точке О и перпендикулярна любому малому перемещению по дуге окружности. Следовательно, работа будет также определяться выражением (5.31).

3. Определим работу силы тяготения при движении тела от точки А к точке В по траектории АСВ (см. рис. 5.15). Работа силы тяготения на малом перемещении Δs i равна ΔА i = F срi Δs i cosα i ,..

Из рисунка видно, что Δs i cosα i = - Δr i , и суммарная работа опять же будет определяться по формуле (5.31).

Итак, можно сделать вывод, что А 1 = А 2 = А 3 , т. е. что работа силы тяготения не зависит от формы траектории. Очевидно, что работа силы тяготения при перемещении тела по замкнутой траектории АА"В"ВА равна нулю.

Сила тяготения - консервативная сила.

Изменение потенциальной энергии равно работе силы тяготения, взятой с обратным знаком:

Если выбрать нулевой уровень потенциальной энергии на бесконечности, т. е. Е пВ = 0 при r В → ∞, то следовательно,

Потенциальная энергия тела массой m, находящегося на расстоянии r от центра Земли, равна:

Закон сохранения энергии для тела массой m, движущегося в поле тяготения, имеет вид

где υ 1 - скорость тела на расстоянии r 1 от центра Земли, υ 2 - скорость тела на расстоянии r 2 от центра Земли.

Определим какую минимальную скорость надо сообщить телу вблизи поверхности Земли, чтобы оно в отсутствие сопротивления воздуха могло удалиться от неё за пределы сил земного притяжения.

Минимальную скорость, при которой тело в отсутствие сопротивления воздуха может удалиться за пределы сил земного притяжения, называют второй космической скоростью для Земли .

На тело со стороны Земли действует сила тяготения, которая зависит от расстояния центра масс этого тела до центра масс Земли. Поскольку неконсервативных сил нет, полная механическая энергия тела сохраняется. Внутренняя потенциальная энергия тела остаётся постоянной, так как оно не деформируется. Согласно закону сохранения механической энергии

На поверхности Земли тело обладает и кинетической, и потенциальной энергией:

где υ II - вторая космическая скорость, М 3 и Я 3 - соответственно масса и радиус Земли.

В бесконечно удаленной точке, т. е. при r → ∞, потенциальная энергия тела равна нулю (W п = 0), а так как нас интересует минимальная скорость, то и кинетическая энергия также должна быть равна нулю: W к = 0.

Из закона сохранения энергии следует:

Эту скорость можно выразить через ускорение свободного падения вблизи поверхности Земли (при расчётах, как правило, этим выражением пользоваться удобнее). Поскольку то GM 3 = gR 2 3 .

Следовательно, искомая скорость

Точно такую же скорость приобрело бы тело, упавшее на Землю с бесконечно большой высоты, если бы не было сопротивления воздуха. Заметим, что вторая космическая скорость в раза больше, чем первая.

Потенциальная энергия гравитационного взаимодействия системы двух материальных точек с массами т и М ,находящихся на расстоянии r одна от другой, равна

где G – гравитационная постоянная, а нуль отсчета потенциальной энергии (Е p = 0) принят при r = ∞. Потенциальная энергия гравитационного взаимодействия тела массой т с Землей,где h – высота тела над поверхностью Земли, М 3 – масса Земли, R 3 – радиус Земли, а нуль отсчета потенциальной энергии выбран при h = 0.

(12)

При том же условии выбора нуля отсчета потенциальная энергия гравитационного взаимодействия тела массой т с Землей для малых высот h (h « R 3)равна

Е p = m∙g∙h ,

где – модуль ускорения свободного падения вблизи поверхности Земли.

Потенциальная энергия упруго деформированного тела

Вычислим работу, совершаемую силой упругости при изменении деформации (удлинения) пружины от некоторого начального значения x 1 до конечного значения x 2 (рис. 4, б, в).

Сила упругости изменяется в процессе деформации пружины. Для нахождения работы силы упругости можно взять среднее значение модуля силы (т. к. сила упругости линейно зависит от x ) и умножить на модуль перемещения:

(13)

где Отсюда

(14)

Физическая величина, равная половине произведения жесткости тела на квадрат его деформации, называется потенциальной энергией упруго деформированного тела:

Из формул (14) и (15) следует, что работа силы упругости равна изменению потенциальной энергии упруго деформированного тела, взятому с противоположным знаком:

А = –(Е р 2 – Е р 1). (16)

Если x 2 = 0 и x 1 = х , то, как видно из формул (14) и (15),

Е р = А.

Тогда физический смысл потенциальной энергии деформированного тела

потенциальная энергия упруго деформированного тела равна работе, которую совершает сила упругости при переходе тела в состояние, в котором деформация равна нулю.

Механическая работа - физическая величина, равная произведению модуля силы на модуль перемещения и косинус угла между нимиA=Fscosα (см. рис.). Работа - величина скалярная (число, не вектор). Измеряется работа в джоулях (Дж). 1 Дж - это работа, совершаемая силой в 1 Н на перемещение 1 м. В зависимости от направлений векторов силы (F) и перемещения (S) механическая работа может быть положительной, отрицательной или равной нулю. Например, если векторы и перпендикулярны, то cos900 = 0 и A = 0. Мощность машины или механизма - это отношение совершенной работы ко времени, в течение которого она совершена . Измеряется мощность в ваттах (Вт), 1 Вт = 1 Дж/с. Простые механизмы: наклонная плоскость, рычаг, блок. Их действие подчиняется«золотому правилу механики»: во сколько раз выигрываем в силе, во столько же раз проигрываем в перемещении. (На практике совершаемая с помощью механизма полная работа всегда несколько больше полезной. Часть работы совершается против силы трения в механизме и перемещения его отдельных частей. Например, применяя подвижный блок, приходится дополнительно совершать работу по поднятию самого блока, веревки и по преодолению силы трения в оси блока. Поэтому для любого механизма полезная работа (AП) всегда меньше, чем полная, затраченная (AЗ). По этой причине КПД = AП/AЗ 100% любого механизма не может быть больше или хотя бы равен 100%).

Мощность - Мощностью N называют величину, равную отношению работы А к промежутку времени t, в течение которого эта работа была совершена:

Из формулы (3.11) следует, что в СИ единицей мощности яв-ляется 1 Дж/с (джоуль в секунду). Эту единицу иначе называют ватт (Вт), 1 Вт= 1 Дж/с.

Связь между мощностью и скоростью при равномерном движении найдем, подставив (3.10) в (3.11):

(Эта формула справедлива и для переменного движения, если под N понимать мгновенную мощность, а под V - мгновенную скорость). Если направление силы совпадает с направлением перемещения, то cosa=1 и N=Fv. Из последней формулы следует, что

Из этих формул видно, что при постоянной мощности двигателя скорость движения обратно пропорциональна силе тяги и наоборот. На этом основан принцип действия коробки скоростей (коробки перемены передач) различных транспортных средств.


Консервативными называются силы, работа которых не зависит от формы траектории, а определяется только положением её начальной и конечной точек. К классу консервативных относятся, например, гравитационные силы, упругие, силы электростатического взаимодействия. Вычислим, например, работу, которую совершает сила тяжести при переходах частицы разными путями из положения 1 в положение 2 (рис. 6.2). Если этот переход произошёл по вертикали, то работа силы : . (6.11) Теперь пусть та же частица переместится из 1 в 2 по пути 1-1’-2. Здесь промежуточная точка 1’ находится на высоте h2. Рис. 6.2 Полная работа будет складываться из работ силы тяжести на участках 1-1’ и 1’-2: . Работа силы тяжести на горизонтальном участке 1’-2 равна нулю, так как здесь вектор силы нормален перемещению. Мы вновь получили прежний результат, свидетельствующий о том, что работа силы тяжести не зависит от формы траектории. Этот вывод легко обобщается и на случай произвольной криволинейной траектории, соединяющей начальную и конечную точки пути. Гравитационная сила, сила упругости, кулоновская сила электростатического взаимодействия относятся к так называемым центральным силам. Центральными называются силы, направленные к одной и той же точке (либо от неё). Эта точка называется силовым центром. Величина центральной силы зависит только от расстояния до силового центра r (рис. 6.3). Рис. 6.3 Покажем, что все центральные силы консервативны. Вычислим работу центральной силы на участке 1-2 произвольной траектории (рис. 6.3). Элементарная работа силы на участке : . Здесь dSr = dSCosα - проекция вектора перемещения на направление силы (или r). Эта проекция представляет собой изменение расстояния dr до силового центра. Значит: dA = F(r)dr. Работа на конечном пути: . Так как по определению величина центральной силы есть функция только расстояния r, то значение определённого интеграла будет зависеть только от величин r1 и r2, и не будет зависеть от формы траектории. Можно дать иное определение консервативной силы. Рассмотрим перемещение частицы из положения 1 в положение 3 под действием консервативной силы (рис. 6.4). Рис. 6.4 Работа, совершаемая при этом силой , не зависит формы от траектории, то есть . Теперь вычислим работу этой же силы на замкнутом пути 1-2-3-4-1. понятно, что её можно представить суммой работ на участках 1-2-3 и 3-4-1 При этом . Отсюда можно заключить, что работа консервативной силы по любому замкнутому пути равна нулю . Силы, работа которых на замкнутом пути не равна нулю, называются неконсервативными. К числу таких сил относятся, например, сила трения и сила вязкого сопротивления. Легко понять, что при движении частицы по замкнутому контуру работа подобных сил будет отрицательной.


В связи с рядом особенностей, а также ввиду особой важности вопрос о потенциальной энергии сил всемирного тяготения необходимо рассмотреть отдельно и более детально.

С первой особенностью мы сталкиваемся при выборе начала отсчета потенциальных энергий. На практике приходится рассчитывать движения данного (пробного) тела под действием сил всемирного тяготения, создаваемых другими телами разных масс и размеров.

Допустим, что мы условились считать равной нулю потенциальную энергию при таком положении, при котором тела соприкасаются. Пусть пробное тело А при взаимодействии по отдельности с шарами одинаковой массы, но разных радиусов, вначале удалено от центров шаров на одно и то же расстояние (рис. 5.28). Нетрудно видеть, что при движении тела А до соприкосновения с поверхностями тел силы тяготения совершат разную работу. Это значит, что мы должны при одинаковых относительных начальных расположениях тел считать потенциальные энергии систем различными.

Сопоставлять эти энергии между собой будет особо затруднительно в случаях, когда рассматриваются взаимодействия и движения трех или большего количества тел. Поэтому для сил всемирного тяготения ищется такой начальный уровень отсчета потенциальных энергий, который бы мог быть одинаковым, общим, для всех тел во Вселенной. Таким общим нулевым уровнем потенциальной энергии сил всемирного тяготения условились считать уровень, соответствующий расположению тел на бесконечно больших расстояниях друг от друга. Как видно из закона всемирного тяготения, на бесконечности обращаются в нуль и сами силы всемирного тяготения.

При таком выборе начала отсчета энергий создается непривычное положение с определением значений потенциальных энергий и проведением всех расчетов.

В случаях сил тяжести (рис. 5.29, а) и упругости (рис. 5.29, б) внутренние силы системы стремятся привести тела на нулевой уровень. При приближении тел к нулевому уровню потенциальная энергия системы уменьшается. Нулевому уровню действительно соответствует наименьшая потенциальная энергия системы.

Это означает, что при всех других положениях тел потенциальная энергия системы положительна.

В случае сил всемирного тяготения и при выборе нуля энергии на бесконечности все происходит наоборот. Внутренние силы системы стремятся увести тела от нулевого уровня (рис. 5.30). Они совершают положительную работу при удалении тел от нулевого уровня, т. е. при сближении тел. При любых конечных расстояниях между телами потенциальная энергия системы меньше, чем при Другими словами, нулевому уровню (при соответствует наибольшая потенциальная энергия. Это означает, что при всех других положениях тел потенциальная энергия системы отрицательна.

В § 96 было найдено, что работа сил всемирного тяготения при переносе тела из бесконечности на расстояние равна

Поэтому потенциальную энергию сил всемирного тяготения нужно считать равной

Эта формула выражает еще одну особенность потенциальной энергии сил всемирного тяготения - сравнительно сложный характер зависимости этой энергии от расстояния между телами.

На рис. 5.31 представлен график зависимости от для случая притяжения тел Землей. Этот график имеет вид равнобочной гиперболы. Вблизи поверхности Земли энергия меняется сравнительно сильно, но уже на расстоянии нескольких десятков земных радиусов энергия становится близкой к нулю и начинает меняться очень медленно.

Любое тело вблизи поверхности Земли находится в своеобразной «потенциальной яме». Всякий раз, когда оказывается необходимым освободить тело от действия сил земного притяжения, нужно прилагать специальные усилия для того, чтобы «вытащить» тело из этой потенциальной ямы.

Точно так же и все другие небесные тела создают вокруг себя такие потенциальные ямы - ловушки, которые захватывают и удерживают все не очень быстро движущиеся тела.

Знание характера зависимости от позволяет значительно упростить решение ряда важных практических задач. Например, необходимо послать космический корабль на Марс, Венеру или на любую другую планету Солнечной системы. Нужно определить, какая скорость должна быть сообщена кораблю при его запуске с поверхности Земли.

Для того чтобы корабль послать к другим планетам, его нужно вывести из сферы действия сил земного притяжения. Другими словами, нужно поднять его потенциальную энергию до нуля. Это становится возможным, если кораблю сообщить такую кинетическую энергию, чтобы он смог совершить работу против сил земного притяжения, равную где масса корабля,

масса и радиус земного шара.

Из второго закона Ньютона следует, что (§ 92)

Но так как скорость корабля до запуска равна нулю, то можно записать просто:

где скорость, сообщаемая кораблю при запуске. Подставляя значение для А, получим

Воспользуемся для исключения как это уже делали в § 96, двумя выражениями для силы земного притяжения на поверхности Земли:

Отсюда - Подставляя это значение в уравнение второго закона Ньютона, получим

Скорость, необходимая для вывода тела из сферы действия сил земного притяжения, называется второй космической скоростью.

Точно так же можно поставить и решить задачу о посылке корабля к далеким звездам. Для решения такой задачи нужно уже определить условия, при которых корабль будет выведен из сферы действия сил притяжения Солнца. Повторяя все рассуждения, которые были проведены в предыдущей задаче, можно получить такое же выражение для скорости, сообщаемой кораблю при запуске:

Здесь а - нормальное ускорение, которое сообщает Солнце Земле и которое может быть рассчитано по характеру движения Земли по орбите вокруг Солнца; радиус земной орбиты. Конечно, в этом случае означает скорость движения корабля относительно Солнца. Скорость, необходимая для вывода корабля за пределы Солнечной системы, называется третьей космической скоростью.

Рассмотренный нами способ выбора начала отсчета потенциальной энергии используется и при расчетах электрических взаимодействий тел. Представление о потенциальных ямах также широко используется в современной электронике, теории твердого тела, теории атома и в физике атомного ядра.

> Гравитационная потенциальная энергия

Что такое гравитационная энергия: потенциальная энергия гравитационного взаимодействия, формула для гравитационной энергии и закон всемирного тяготения Ньютона.

Гравитационная энергия – потенциальная энергия, связанная с гравитационной силой.

Задача обучения

  • Вычислить гравитационную потенциальную энергию для двух масс.

Основные пункты

Термины

  • Потенциальная энергия – энергия объекта в его позиции или химическом состоянии.
  • Затон тяготения Ньютона – каждая точечная вселенская масса притягивает другую при помощи силы, выступающей прямо пропорциональной их массам и обратно пропорциональной квадрату их дистанции.
  • Сила тяжести – результирующая сила наземной поверхности, притягивающая объекты к центру. Создается вращением.

Пример

Какой будет гравитационная потенциальная энергия 1-килограммовой книги на высоте в 1 м? Так как положение установлено близко к земной поверхности, то гравитационное ускорение будет постоянным (g = 9.8 м/с 2), а энергия гравитационного потенциала (mgh) достигает 1 кг ⋅ 1 м ⋅ 9.8 м/с 2 . Это можно проследить и в формуле:

Если добавить массу и земной радиус.

Гравитационная энергия отображает собою потенциальную, связанную с силой гравитации, потому что необходимо преодолеть земное притяжение, чтобы выполнить работу над поднятием предметов. Если объект падает от одной точки к другой внутри гравитационного поля, то сила тяжести выполнит положительную работу, а гравитационная потенциальная энергия уменьшится на ту же величину.

Допустим у нас есть книга, оставленная на столе. Когда мы переносим ее с пола на вершину стола, определенное внешнее вмешательство работает против гравитационной силы. Если же она упадет, то это работа гравитации. Поэтому процесс падения отображает потенциальную энергию, ускоряющую массу книгу и трансформирующуюся в кинетическую. Как только книга коснется пола, кинетическая энергия станет теплом и звуком.

На гравитационную потенциальную энергию влияют высота относительно конкретной точки, масса и сила гравитационного поля. Так что книга на столе уступает по гравитационной потенциальной энергии более тяжелой книга, расположенной ниже. Запомните, что высота не может применяться в вычислении гравитационной потенциальной энергии, если гравитация не выступает постоянной.

Локальное приближение

На силу гравитационного поля влияет расположение. Если изменение дистанции незначительное, то им можно пренебречь, а силу тяжести сделать постоянной (g = 9.8 м/с 2). Тогда для вычисления используем простую формулу: W = Fd. Восходящая сила приравнивается к весу, поэтому работа соотносится с mgh, выливающихся в формуле: U = mgh (U – потенциальная энергия, m – масса объекта, g – ускорение силы тяжести, h – высота объекта). Значение выражается в джоулях. Изменение потенциальной энергии передается как

Общая формула

Однако, если мы сталкиваемся с серьезными переменами в дистанции, то g не может оставаться постоянной и приходится применять исчисление и математическое определение работы. Чтобы рассчитать потенциальную энергию, можно интегрировать гравитационную силу относительно дистанции между телами. Тогда получим формулу гравитационной энергии:

U = -G + K, где К – постоянная интегрирования и приравнивается к нулю. Здесь потенциальная энергия превращается в ноль, когда r – бесконечна.

Введение в равномерное круговое движение и гравитацию
Неравномерное круговое движение
Скорость, ускорение и сила
Типы сил в природе
Закон универсальной гравитации Ньютона
Законы Кеплера
Гравитационно потенциальная энергия
Энергосбережение
Угловые и линейные величины