Кинетическая энергия маятника формула. Свободные колебания. Математический маятник

Определение

Математический маятник - это колебательная система, являющаяся частным случаем физического маятника, вся масса которого сосредоточена в одной точке, центре масс маятника.

Обычно математический маятник представляют как шарик, подвешенный на длинной невесомой и нерастяжимой нити. Это идеализированная система, совершающая гармонические колебания под действием силы тяжести. Хорошим приближением к математическому маятнику массивный маленький шарик, осуществляющий колебания на тонкой длинной нити.

Галилей первым изучал свойства математического маятника, рассматривая качание паникадила на длинной цепи. Он получил, что период колебаний математического маятника не зависит от амплитуды. Если при запуске мятника отклонять его на разные малые углы, то его колебания будут происходить с одним периодом, но разными амплитудами. Это свойство получило название изохронизма.

Уравнение движения математического маятника

Математический маятник - классический пример гармонического осциллятора. Он совершает гармонические колебания, которые описываются дифференциальным уравнением:

\[\ddot{\varphi }+{\omega }^2_0\varphi =0\ \left(1\right),\]

где $\varphi $ - угол отклонения нити (подвеса) от положения равновесия.

Решением уравнения (1) является функция $\varphi (t):$

\[\varphi (t)={\varphi }_0{\cos \left({\omega }_0t+\alpha \right)\left(2\right),\ }\]

где $\alpha $ - начальная фаза колебаний; ${\varphi }_0$ - амплитуда колебаний; ${\omega }_0$ - циклическая частота.

Колебания гармонического осциллятора - это важный пример периодического движения. Осциллятор служит моделью во многих задачах классической и квантовой механики.

Циклическая частота и период колебаний математического маятника

Циклическая частота математического маятника зависит только от длины его подвеса:

\[\ {\omega }_0=\sqrt{\frac{g}{l}}\left(3\right).\]

Период колебаний математического маятника ($T$) в этом случае равен:

Выражение (4) показывает, что период математического маятника зависит только от длины его подвеса (расстояния от точки подвеса до центра тяжести груза) и ускорения свободного падения.

Уравнение энергии для математического маятника

При рассмотрении колебаний механических систем с одной степенью свободы часто берут в качестве исходного не уравнения движения Ньютона, а уравнение энергии. Так как его проще составлять, и оно является уравнением первого порядка по времени. Предположим, что трение в системе отсутствует. Закон сохранения энергии для совершающего свободные колебания математического маятника (колебания малые) запишем как:

где $E_k$ - кинетическая энергия маятника; $E_p$ - потенциальная энергия маятника; $v$ - скорость движения маятника; $x$ - линейное смещение груза маятника от положения равновесия по дуге окружности радиуса $l$, при этом угол - смещение связан с $x$ как:

\[\varphi =\frac{x}{l}\left(6\right).\]

Максимальное значение потенциальной энергии математического маятника равно:

Максимальная величина кинетической энергии:

где $h_m$ - максимальная высота подъема маятника; $x_m$- максимальное отклонение маятника от положения равновесия; $v_m={\omega }_0x_m$ - максимальная скорость.

Примеры задач с решением

Пример 1

Задание. Какова максимальная высота подъема шарика математического маятника, если его скорость движения при прохождении положения равновесия составляла $v$?

Решение. Сделаем рисунок.

Пусть ноль потенциальной энергии шарика в его положении равновесия (точка 0).В этой точке скорость шарика максимальна и равна по условию задачи $v$. В точке максимального подъема шарика над положением равновесия (точка A), скорость шарика равна нулю, потенциальная энергия максимальна. Запишем закон сохранения энергии для рассмотренных двух положений шарика:

\[\frac{mv^2}{2}=mgh\ \left(1.1\right).\]

Из уравнения (1.1) найдем искомую высоту:

Ответ. $h=\frac{v^2}{2g}$

Пример 2

Задание. Каково ускорение силы тяжести, если математический маятник имеющий длину $l=1\ м$, совершает колебания с периодом равным $T=2\ с$? Считайте колебания математического маятника малыми.\textit{}

Решение. За основу решения задачи примем формулу для вычисления периода малых колебаний:

Выразим из нее ускорение:

Проведем вычисления ускорения силы тяжести:

Ответ. $g=9,87\ \frac{м}{с^2}$

10.4. Закон сохранения энергии при гармонических колебаниях

10.4.1. Сохранение энергии при механических гармонических колебаниях

Сохранение энергии при колебаниях математического маятника

При гармонических колебаниях полная механическая энергия системы сохраняется (остается постоянной).

Полная механическая энергия математического маятника

E = W k + W p ,

где W k - кинетическая энергия, W k = = mv 2 /2; W p - потенциальная энергия, W p = mgh ; m - масса груза; g - модуль ускорения свободного падения; v - модуль скорости груза; h - высота подъема груза над положением равновесия (рис. 10.15).

При гармонических колебаниях математический маятник проходит ряд последовательных состояний, поэтому целесообразно рассмотреть энергию математического маятника в трех положениях (см. рис. 10.15):

Рис. 10.15

1) в положении равновесия

потенциальная энергия равна нулю; полная энергия совпадает с максимальной кинетической энергией:

E = W k max ;

2) в крайнем положении (2 ) тело поднято над исходным уровнем на максимальную высоту h max , поэтому потенциальная энергия также максимальна:

W p max = m g h max ;

кинетическая энергия равна нулю; полная энергия совпадает с максимальной потенциальной энергией:

E = W p max ;

3) в промежуточном положении (3 ) тело обладает мгновенной скоростью v и поднято над исходным уровнем на некоторую высоту h , поэтому полная энергия представляет собой сумму

E = m v 2 2 + m g h ,

где mv 2 /2 - кинетическая энергия; mgh - потенциальная энергия; m - масса груза; g - модуль ускорения свободного падения; v - модуль скорости груза; h - высота подъема груза над положением равновесия.

При гармонических колебаниях математического маятника полная механическая энергия сохраняется:

E = const.

Значения полной энергии математического маятника в трех его положениях отражены в табл. 10.1.

Положение W p W k E = W p + W k
1 Равновесие 0 m v max 2 / 2 m v max 2 / 2
2 Крайнее mgh max 0 mgh max
3 Промежуточное (мгновенное) mgh mv 2 /2 mv 2 /2 + mgh

Значения полной механической энергии, представленные в последнем столбце табл. 10.1, имеют равные значения для любых положений маятника, что является математическим выражением :

m v max 2 2 = m g h max ;

m v max 2 2 = m v 2 2 + m g h ;

m g h max = m v 2 2 + m g h ,

где m - масса груза; g - модуль ускорения свободного падения; v - модуль мгновенной скорости груза в положении 3 ; h - высота подъема груза над положением равновесия в положении 3 ; v max - модуль максимальной скорости груза в положении 1 ; h max - максимальная высота подъема груза над положением равновесия в положении 2 .

Угол отклонения нити математического маятника от вертикали (рис. 10.15) определяется выражением

cos α = l − h l = 1 − h l ,

где l - длина нити; h - высота подъема груза над положением равновесия.

Максимальный угол отклонения α max определяется максимальной высотой подъема груза над положением равновесия h max:

cos α max = 1 − h max l .

Пример 11. Период малых колебаний математического маятника равен 0,9 с. На какой максимальный угол от вертикали будет отклоняться нить, если, проходя положение равновесия, шарик движется со скоростью, равной 1,5 м/с? Трение в системе отсутствует.

Решение . На рисунке показаны два положения математического маятника:

  • положение равновесия 1 (характеризуется максимальной скоростью шарика v max);
  • крайнее положение 2 (характеризуется максимальной высотой подъема шарика h max над положением равновесия).

Искомый угол определяется равенством

cos α max = l − h max l = 1 − h max l ,

где l - длина нити маятника.

Максимальную высоту подъема шарика маятника над положением равновесия найдем из закона сохранения полной механической энергии.

Полная энергия маятника в положении равновесия и в крайнем положении определяется следующими формулами:

  • в положении равновесия -

E 1 = m v max 2 2 ,

где m - масса шарика маятника; v max - модуль скорости шарика в положении равновесия (максимальная скорость), v max = 1,5 м/с;

  • в крайнем положении -

E 2 = mgh max ,

где g - модуль ускорения свободного падения; h max - максимальная высота подъема шарика над положением равновесия.

Закон сохранения полной механической энергии:

m v max 2 2 = m g h max .

Выразим отсюда максимальную высоту подъема шарика над положением равновесия:

h max = v max 2 2 g .

Длину нити определим из формулы для периода колебаний математического маятника

T = 2 π l g ,

т.е. длина нити

l = T 2 g 4 π 2 .

Подставим h max и l в выражение для косинуса искомого угла:

cos α max = 1 − 2 π 2 v max 2 g 2 T 2

и произведем вычисление с учетом приблизительного равенства π 2 = 10:

cos α max = 1 − 2 ⋅ 10 ⋅ (1,5) 2 10 2 ⋅ (0,9) 2 = 0,5 .

Отсюда следует, что максимальный угол отклонения составляет 60°.

Строго говоря, при угле 60° колебания шарика не являются малыми и пользоваться стандартной формулой для периода колебаний математического маятника неправомерно.

Сохранение энергии при колебаниях пружинного маятника

Полная механическая энергия пружинного маятника складывается из кинетической энергии и потенциальной энергии:

E = W k + W p ,

где W k - кинетическая энергия, W k = mv 2 /2; W p - потенциальная энергия, W p = k (Δx ) 2 /2; m - масса груза; v - модуль скорости груза; k - коэффициент жесткости (упругости) пружины; Δx - деформация (растяжение или сжатие) пружины (рис. 10.16).

В Международной системе единиц энергия механической колебательной системы измеряется в джоулях (1 Дж).

При гармонических колебаниях пружинный маятник проходит ряд последовательных состояний, поэтому целесообразно рассмотреть энергию пружинного маятника в трех положениях (см. рис. 10.16):

1) в положении равновесия (1 ) скорость тела имеет максимальное значение v max , поэтому кинетическая энергия также максимальна:

W k max = m v max 2 2 ;

потенциальная энергия пружины равна нулю, так как пружина не деформирована; полная энергия совпадает с максимальной кинетической энергией:

E = W k max ;

2) в крайнем положении (2 ) пружина имеет максимальную деформацию (Δx max), поэтому потенциальная энергия также имеет максимальное значение:

W p max = k (Δ x max) 2 2 ;

кинетическая энергия тела равна нулю; полная энергия совпадает с максимальной потенциальной энергией:

E = W p max ;

3) в промежуточном положении (3 ) тело обладает мгновенной скоростью v , пружина имеет в этот момент некоторую деформацию (Δx ), поэтому полная энергия представляет собой сумму

E = m v 2 2 + k (Δ x) 2 2 ,

где mv 2 /2 - кинетическая энергия; k (Δx ) 2 /2 - потенциальная энергия; m - масса груза; v - модуль скорости груза; k - коэффициент жесткости (упругости) пружины; Δx - деформация (растяжение или сжатие) пружины.

При смещении груза пружинного маятника от положения равновесия на него действует возвращающая сила , проекция которой на направление движения маятника определяется формулой

F x = −kx ,

где x - смещение груза пружинного маятника от положения равновесия, x = ∆x , ∆x - деформация пружины; k - коэффициент жесткости (упругости) пружины маятника.

При гармонических колебаниях пружинного маятника полная механическая энергия сохраняется:

E = const.

Значения полной энергии пружинного маятника в трех его положениях отражены в табл. 10.2.

Положение W p W k E = W p + W k
1 Равновесие 0 m v max 2 / 2 m v max 2 / 2
2 Крайнее k (Δx max) 2 /2 0 k (Δx max) 2 /2
3 Промежуточное (мгновенное) k (Δx ) 2 /2 mv 2 /2 mv 2 /2 + k (Δx ) 2 /2

Значения полной механической энергии, представленные в последнем столбце таблицы, имеют равные значения для любых положений маятника, что является математическим выражением закона сохранения полной механической энергии :

m v max 2 2 = k (Δ x max) 2 2 ;

m v max 2 2 = m v 2 2 + k (Δ x) 2 2 ;

k (Δ x max) 2 2 = m v 2 2 + k (Δ x) 2 2 ,

где m - масса груза; v - модуль мгновенной скорости груза в положении 3 ; Δx - деформация (растяжение или сжатие) пружины в положении 3 ; v max - модуль максимальной скорости груза в положении 1 ; Δx max - максимальная деформация (растяжение или сжатие) пружины в положении 2 .

Пример 12. Пружинный маятник совершает гармонические колебания. Во сколько раз его кинетическая энергия больше потенциальной в тот момент, когда смещение тела из положения равновесия составляет четверть амплитуды?

Решение . Сравним два положения пружинного маятника:

  • крайнее положение 1 (характеризуется максимальным смещением груза маятника от положения равновесия x max);
  • промежуточное положение 2 (характеризуется промежуточными значениями смещения от положения равновесия x и скорости v →).

Полная энергия маятника в крайнем и промежуточном положениях определяется следующими формулами:

  • в крайнем положении -

E 1 = k (Δ x max) 2 2 ,

где k - коэффициент жесткости (упругости) пружины; ∆x max - амплитуда колебаний (максимальное смещение от положения равновесия), ∆x max = A ;

  • в промежуточном положении -

E 2 = k (Δ x) 2 2 + m v 2 2 ,

где m - масса груза маятника; ∆x - смещение груза от положения равновесия, ∆x = A /4.

Закон сохранения полной механической энергии для пружинного маятника имеет следующий вид:

k (Δ x max) 2 2 = k (Δ x) 2 2 + m v 2 2 .

Разделим обе части записанного равенства на k (∆x ) 2 /2:

(Δ x max Δ x) 2 = 1 + m v 2 2 ⋅ 2 k Δ x 2 = 1 + W k W p ,

где W k - кинетическая энергия маятника в промежуточном положении, W k = mv 2 /2; W p - потенциальная энергия маятника в промежуточном положении, W p = k (∆x ) 2 /2.

Выразим из уравнения искомое отношение энергий:

W k W p = (Δ x max Δ x) 2 − 1

и рассчитаем его значение:

W k W p = (A A / 4) 2 − 1 = 16 − 1 = 15 .

В указанный момент времени отношение кинетической и потенциальной энергий маятника равно 15.

Повторение

Полная механическая энергия тела

\(W=W_{k} +W_{p1} +W_{p2}, \; \; \; W_{k} =\frac{m\cdot \upsilon ^{2} }{2}, \; \; \; W_{p1} =m\cdot g\cdot h, \; \; \; W_{p2} =\frac{k\cdot \Delta l^{2} }{2},\)

где W k - кинетическая энергия тела в данный момент времени (энергия движения), m - масса тела, υ - значение скорости тела в данный момент времени, W p 1 - потенциальная энергия тела, поднятого на высоту h , в данный момент времени (энергия взаимодействия), h - высота подъема тела в данный момент времени, W p 2 - потенциальная энергия деформированного тела в данный момент времени, Δl - абсолютное удлинение тела в данный момент времени.

Если в замкнутой системе нет внешних сил (например, силы трения), то полная механическая энергия замкнутой системы сохраняется.

Математический маятник

Рассмотрим превращения энергии при колебаниях математического маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При колебаниях математического маятника изменяется высота h грузика относительно положения равновесия и изменяется его скорость υ (рис. 1). Причем при максимальных смещениях высота достигает максимального значения h max , а скорость становится равной нулю, в положении равновесия наоборот: высота тела равна нулю, а скорость достигает максимального значения υ max .

Так как высота тела определяет его потенциальную энергию W p \(\left(W_{p} =m\cdot g\cdot h\right),\) а скорость - кинетическую энергию W k \(\left(W_{k} =\frac{m\cdot \upsilon ^{2}}{2} \right),\) то вместе с изменением высоты и скорости, будут изменяться и энергии.

Обозначения в таблице:

\(W_{p\; \max } = m\cdot g\cdot h_{\max }, \; \; \; W_{p2} =m\cdot g\cdot h_{2}, \; \; \; W_{p4} =m\cdot g\cdot h_{4}, \; \; \; W_{p6} =m\cdot g\cdot h_{6},\)

Mex-majat-2-01.swf Рис. 3 Увеличить Flash

Пружинный маятник

Рассмотрим превращения энергии при колебаниях горизонтального пружинного маятника. Выберем систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю.

При колебаниях пружинного маятника изменяется абсолютное удлинение пружины Δl относительно положения равновесия (т.е. изменяется смещение грузика x = Δl ) и изменяется скорость грузика υ (рис. 3). Причем при максимальных смещениях абсолютное удлинение достигает максимального значения Δl max , а скорость становится равной нулю, в положении равновесия наоборот: абсолютное удлинение равно нулю, а скорость достигает максимального значения υ max .

Так как абсолютное удлинение пружины определяет ее потенциальную энергию W p \(\left(W_{p} =\frac{k\cdot \Delta l^{2}}{2} \right),\) а скорость - кинетическую энергию W k \(\left(W_{k} =\frac{m\cdot \upsilon ^{2}}{2} \right),\) то вместе с изменением абсолютного удлинения и скорости, будут изменяться и энергии.

Обозначения в таблице:

\(W_{p\; \max } =\frac{k\cdot x_{\max }^{2} }{2}, \;\;\; W_{p2} =\frac{k\cdot x_{2}^{2} }{2}, \;\;\; W_{p4} =\frac{k\cdot x_{4}^{2} }{2}, \;\;\; W_{p6} =\frac{k\cdot x_{6}^{2} }{2},\)

\(W_{k\; \max } =\frac{m\cdot \upsilon _{\max }^{2} }{2}, \; \; \; W_{k2} =\frac{m\cdot \upsilon _{2}^{2} }{2}, \; \; \; W_{k4} =\frac{m\cdot \upsilon _{4}^{2} }{2}, \; \; \; W_{k6} =\frac{m\cdot \upsilon _{6}^{2} }{2}.\)

Полная энергия маятника сохраняется с течением времени, поскольку нет силы трения. Тогда

\(W=W_{k\, \max } = W_{p\, \max } = W_{k2} + W_{p2} = W_{k4} +W_{p4} = ...\)

Mex-majat-2-02.swf Рис. 5 Увеличить Flash

Если для вертикального пружинного маятника выбрать систему отсчета таким образом, чтобы в положении равновесия его потенциальная энергия была равна нулю, то все описанное выше для горизонтального маятника можно применить для данного маятника.

Литература

  1. Жилко, В.В. Физика: учеб. Пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В.Жилко, Л.Г.Маркович. - Минск: Нар. Асвета, 2009. - С. 19-21.

ЦЕЛЬ: экспериментально проверить закон сохранения энергии поступательно-вращательного движения на маятнике Максвелла; определить скорость поступательного движения маятника по энергетическим и кинематическим соотношениям и сравнить их.

ОБОРУДОВАНИЕ: маятник Максвелла со сменными кольцами; электронный секундомер.

ОСНОВЫ ТЕОРИИ

Наиболее общей мерой движения материи является ее энергия. В механике это механическая энергия, соответствующая механическому движению тел. Различают два вида механической энергии: кинетическую и потенциальную.

Потенциальная энергия . Энергия, определяемаявзаимным расположением взаимодействующих тел и зависящая только от координат, называется потенциальной. РаботаА 12 , совершаемая консервативными силами при переводе системы из одного состояния в другое, равна убыли потенциальной энергии в этих состояниях.

А 12 = W 1 - W 2 , (1)

где W 1 иW 2 соответственно потенциальная энергия системы в состояниях 1 и 2.

Конкретный вид потенциальной энергии зависит от характера силового поля. В поле силы тяжести потенциальная энергия тела массы m имеет вид:

W = m·g·h , (2)

где g ускорение свободного падения;

h высота, отсчитанная от уровня, где потенциальная энергияW =0.

Кинетическая энергия . Это энергия, которой обладает тело (либо система тел) благодаря их движению. В случае, если тело движется поступательно со скоростьюv и одновременно вращается вокруг некоторой оси с угловой скоростью, то полная кинетическая энергия его движения равна:

где m масса тела;

I момент инерции.

Как видно, при вращательном движении роль линейной скорости играет угловая скорость, а роль массы момент инерции. Момент импульсаI зависит не только от массы, но и от распределения этой массы относительно оси вращения. ЗначениеI для некоторых тел правильной геометрической формы (длинный стержень, диск, шар, цилиндр) приведены в учебниках по курсу общей физики.

Закон сохранения энергии . Механическая энергия замкнутой системы тел, между которыми действуют консервативные силы остается постоянной. В таких системах при движении тела происходит превращение кинетической энергии в потенциальную и обратно, а полная энергия остается постоянной. (К консервативным силам относятся гравитационные, упругие, кулоновские и др.. Неконсервативными силами являются силы трения, сопротивления, неупругих деформаций.).

Механическая энергия сохраняется и в незамкнутых системах, если внешние силы не совершают работу, поскольку мерой измерения энергии является совершаемая работа.

МЕТОДИКА ЭКСПЕРИМЕНТА

Проверка закона сохранения энергии поступательно-вращательного движения тела выполняется на маятнике Максвелла. Маятник Максвелла это диск, закрепленный на оси. Ось, в свою очередь, подвешена на двух нитях, закрепленных верхними концами на кронштейнах.

Эти нити могут наматываться на ось, а при раскручивании их маятник совершает поступательно-вращательное движение, т.е. поднимается и опускается, вращаясь.

В процессе эксперимента выделены два основных состояния. В состоянии 1 маятник массой m находится на высотеh . Механическая энергия системы в этом состоянии равна только потенциальной энергии:

E 1 = W 1 = m·g·h. (4)

Отпустим маятник. Под действием равнодействующей сил тяжести и натяжения нити он начинает падать вниз (поступательное движение), а силы натяжения нитей приведут его во вращательное движение.

Рис. 1. Общий вид маятника Максвелла.

Т - сила натяжения нити;F g - сила тяжести.

В состоянии 2 маятник, опустившийся с высоты h , движется поступательно с скоростьюv, вращаясь при этом вокруг оси, проходящей через центр масс с угловой скоростью.Следовательно, механическая энергия системы в состоянии 2 складывается из кинетических энергий поступательного и вращательного движения:

. (5)

В выделенной системе (маятник в поле сил тяжести) должен выполняться закон сохранения энергии. Сила тяжести консервативная сила. Сила натяжения нити является внешней силой. но она не совершает работы, т.к. ее точка приложения при малом повороте маятника остается на месте. Следовательно:

. (6)

Скорость поступательного движения маятника связана с угловой скоростью соотношением

v = ·r, (7)

где r радиус оси маятника.

Тогда формула (6) примет вид:

2gh = v 2 (1+I/mr 2). (8)

А скорость поступательного движения маятника приобретает значение:

. (9)

Для проверки закона сохранения энергии вычислим скорость другим независимым способом, используя известные кинематические соотношения. Т. к. движение маятника является равноускоренным, то, если за время падения t маятник прошел путьh , его ускорение равно

a = 2h / t 2 . (10)

Отсюда скорость поступательного движения маятника в конце пути:

v = a t = 2h/t. (11)

Скорость в (9) зависит от момента инерции маятника, который можно изменять, устанавливая на диск различные кольца. Момент инерции маятника определяется как

I = I 0 + I Д + I К. (12)

где I 0 - момент инерции оси,

- момент инерции диска,

- момент инерции кольца,

R Д , R К - радиусы диска и кольца.

Радиус кольца берется как среднее значение между внутренним и внешним радиусами. Так как радиус оси маятника значительно меньше радиуса диска, моментом инерции оси можно пренебречь.

Логическая схема метода.

Если скорость, определенная из закона сохранения энергии по соотношению (9) будет равна скорости, определенной кинематически по формуле (11), то это подтверждает сохранение энергии для выделенной системы.

ВЫПОЛНЕНИЕ РАБОТЫ

1. Измерьте время падения маятника с одним из колец, указанных преподавателем.

2. Повторите измерения 5-10 раз.

3. Измерьте высоту падения и высоту подъема маятника.

4. Измерьте штангенциркулем диаметр оси маятника, внутренний и внешний диаметр кольца.

ОБРАБОТКА РЕЗУЛЬТАТОВ

1. Вычислите среднее значение времени падения и статистическую погрешность измеренияt .

2. Рассчитайте скорость v 1 по соотношению (11).

3. Вычислите погрешность измерения скорости v 1 по правилу вычисления погрешности для косвенных измерений.

4. Вычислите момент инерции маятника с кольцом. Массы диска и кольца нанесены на них.

5. Вычислите скорость маятника v 2 по соотношению (9).

6. Определите меру несовпадения = (v 1 - v 2 )/ v 1 и сравните с относительной погрешностью v 1 = v 1 / v 1 .

ДОПОЛНИТЕЛЬНОЕ ЗАДАНИЕ

    Определите потери энергии по разности между высотой падения и последующей высотой подъема маятника.

    Вычислите среднюю эффективную силу трения, создающую потери энергии.

КОНТОЛЬНЫЕ ВОПРОСЫ

1. Какие существуют виды механической энергии? Дайте их определения.

2. Сформулируйте закон сохранения механической энергии системы и условия его выполнения.

3. Опишите превращение энергии для маятника Максвелла.

4. Что такое момент инерции тела? Чему равен момент инерции диска, кольца?

5. Как определяется скорость поступательного движения маятника Максвелла?

Небольшой шарик, подвешенный на легкой нерастяжимой нити, способен совершать свободное колебательное движение (рис. 598).

рис. 598
 Для описания движения маятника будем считать шарик материальной точкой, пренебрежем массой нити и сопротивлением воздуха. Такая модель называется математическим маятником .
 В качестве координаты, описывающей положение шарика, выберем угол отклонения нити от вертикали φ . Для описания изменения этой координаты удобно использовать уравнение динамики вращательного движения

где J = ml 2 − момент инерции системы, ε = Δω/Δt − угловое ускорение тела (вторая производная от угла поворота), M − суммарный момент внешних сил действующих на систему 1 . На шарик действуют силы тяжести mg и натяжения нити. Момент силы натяжения нити N относительно точки подвеса равен нулю, поэтому уравнение (1) для подвешенного шарика приобретает вид

или

 Это уравнение описывает колебания маятника, но не является уравнением гармонических колебаний, так как момент сил пропорционален синусу угла отклонения, а не самому углу. Однако, если считать углы отклонения малыми (сколько это − мы выясним позднее), можно воспользоваться приближенной формулой sinφ ≈ φ в этом приближении уравнение (3) превращается в знакомое уравнение гармонических колебаний

где Ω = √{g/l} − круговая частота малых колебаний маятника 2 . Решение этого уравнения мы уже выписывали

здесь φ o − максимальное отклонение нити, то есть амплитуда колебаний. Для простоты будем считать, что начальная скорость шарика равна нулю.
Период малых колебаний маятника выражается через круговую частоту

 Так как малые колебания математического маятника являются гармоническими, то их период не зависят от амплитуды. Этот факт был экспериментально отмечен еще Г. Галилеем. При больших углах отклонения период колебаний математического маятника незначительно возрастает.
 Отметим, что период колебаний математического маятника не зависит также от массы шарика − вспомните, ускорение свободного падения, а также другие характеристики движения тела в поле тяжести Земли также не зависят от массы тела (если, конечно, пренебрегать сопротивлением воздуха).
 Формула (6) может быть использована и используется для экспериментального определения ускорения свободного падения. Длина нити и период колебаний достаточно просто измерить экспериментально, затем с помощью формулы (6) можно рассчитать ускорение свободного падения.
 Попробуем описать движение математического маятника с помощью закона сохранения механической энергии. Кинетическая энергия шарика выражается формулой

 Нулевой уровень отсчета потенциальной энергии совместим с точкой подвеса нити, тогда потенциальная энергия шарика равна

 Уравнения закона сохранения механической энергии (с учетом начальных условий) имеет вид

 Это уравнение также не является уравнением гармонических колебаний. Но, если мы опять будем считать углы отклонения маятника малыми и воспользуемся приближенной формулой

то уравнение (7) перейдет в уравнение гармонических колебаний

или

где обозначено Ω = √{g/l} − круговая частота колебаний, совпадающая с полученной из динамического уравнения (2).
 Конечно, такое совпадение не является случайным − фактически в обоих подходах мы использовали одно и то же приближение малых углов отклонения.

1 В принципе, можно использовать и уравнения динамики поступательного движения, но используемый здесь подход является предпочтительным, так как траекторией движения точки является дуга окружности.
2 Мы выбрали обозначение Ω (это тоже «омега», только заглавная) для собственной частоты малых колебаний, чтобы традиционное обозначение ω − оставить за угловой скоростью движения шарика, которая далее будет фигурировать в наших рассуждениях.